Chapter - Introduction ' Discrete Structures

Introduction

Discrete Mathematics deals with discrete objects. Discrete objects are those objects that
can be counted and are not connected for e.g. houses, trees, desks, integers, etc. So
dealing with these discrete objects requires different concepts like counting techniques,
knowledge of different discrete structures that are needed to understand what exactly
discrete structure is like sets, relations, graphs, etc. we start our quest with foundation and

go in depth later.
Logic

Logic is a language for reasoning. Since logic can helps us to reason the mathematical
models it needs some rules associated with logic so that we can apply those rules for
mathematical reasoning. There are lots of applications of logic in the field of computer

science for e.g. designing circuits, programming, program verifications, etc.
Propositions and Propositional Calculus

Proposition is a fundamental concept in logic. Proposition is a declarative sentence that is
either true or false, but not both. See the examples below:

2 +2 =5. (False), 7-1=6. (True)

It is hot today. (If it is hot then true)

Kathmandu is the capital of Nepal. (True)
All the above examples are either true or false.
Try to analyze the sentences below:

x>35, Come here, Who are you?, 3+4
The above sentences are not propositions since we cannot say whether they are true or
false.
Propositions are denoted conventionally by using small letters like p, g, r, s .... The truth
value of proposition is denoted by T for true proposition and F for false proposition.
Reminder: p, q ,r ,s ... are not actual propositions but they are propositional variables
i.e. place holders for propositions.
The logic that deals with propositions is called propositional logic or propositional

calculus.
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Logical Operators/Connectives

Logical operators are used to construct mathematical statements having one or more
propositions by combining the propositions. The combined proposition is called
compound Proposition. The truth table is used to get the relationship between truth values
of propositions. Here we present the logical operators along with their behavior in truth
table:

Negation (not)

Given a proposition p, negation operator (—) is used to get negation of p denoted by —p
called “not p”.

Example: Negation of the proposition “ I love birds” is “ I do not love birds” if the
sentence I love birds is denoted by p then its negation is denoted by —p.

Truth table

P —p
F
F T

Conjunction (and)

Given two propositions p and q, the proposition “p and q” denoted by pAaq is the
proposition that is true whenever both the propositions p and q are true, false otherwise.
The proposition that is obtained by the use of “and” operator is also called conjunction of
p and g.

Example: If we have propositions p = “Ram is intelligent” and q = “Ram is diligent” the
conjunction of p and q is Ram is intelligent and diligent. This proposition is true only

when Ram is intelligent and he is diligent also, false otherwise.

Truth Table
p q pAq
T T T
T F F
F T F
F F F
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Disjunction (or)

Given two propositions p and ¢, the proposition “p or q” denoted by pvq is the
proposition that is false whenever both the propositions p and q are false, true otherwise.
The proposition that is obtained by the use of “or” operator is also called disjunction of p
and q.

Example: If we have propositions p = “Ram is intelligent” and q = “Ram is diligent” the
disjunction of p and q is Ram is intelligent or he is diligent. This proposition is false only

when Ram is not intelligent and not diligent, true otherwise.

Truth Table
P q pvq
T T T
T F T
F T T
F F F

Exclusive or (Xor)

Given two propositions p and g, the proposition exclusive or of p and q denoted by p @ q
is the proposition that is true whenever only one of the propositions p and q is true, false
otherwise. As opposed to the disjunction above which is inclusive the general meaning of
the English sentence can be used to know whether the “or” used is inclusive or exclusive.

Example: If we have propositions p = “Ram drinks coffee in the morning” and q = “Ram

drinks tea in the morning” the exclusive or of p and q is Ram drinks coffee or tea in the

morning.

Truth Table
p q p®q
T T F
T F T
F T T
F F F
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Implication

Given two propositions p and g, the proposition implication p — q is the proposition that
is false when p is true and q is false, true otherwise. Here p is called “hypothesis” or
“antecedent” or “premise” and q is called “conclusion” or “consequence”.

We come across the implication in many places in mathematical reasoning and we use

99 ¢

different terminologies to express p — q like: “if p, then q”, “q is consequence of p”,

29 ¢

“p is sufficient for q”, “qif p

29 ¢ 29 ¢ LN 15

q is necessary for p”, “q follows from p”, “if p, q”,

“p implies q”, “p only if q”,“q whenever p”,“q provides p”

Example: p = “today is Sunday” q = “it is hot” then the implication can be “if today is
Sunday then it is hot today” or “today is Sunday only if it is hot today”.

Truth Table

P q P—q
T T F
T F F
F T T
F F T

Contrapositive, Inverse and Converse

Some of the related implications formed from p — q are:

Converse: q — p (if it is hot today then today is Sunday).

Inverse: —p — —q (if today is not Sunday then it is not hot today).

Contrapositive: —=q — —p (if it is not hot then today is not Sunday).

(Is contrapositive same as p — q? verify!!!).

Biconditional

Given propositions p and g, the biconditional p <> q is a proposition that is when p and q
have same truth values. Alternatively p <> q is true whenever both q — p and q — p are
true. Some of the terminologies used for biconditional are:

2% ¢

“pifand only if @~  “if p then q, and conversely” “p is necessary and sufficient for q”
Example: For propositions given above in implication, “today is Sunday if and only if it

is hot today”.
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Truth Table

I I T
| e M ] O
= o= o o=

F

More Examples logical connectives:
1) Let, p = “it rained last night”
g = “the sprinkles came on last night”
r = “the lawn was wet this morning”
Translate the following into English —p, r A —p and —r v p v q.
—p = “ it didn’t rain last night”
r A —p = “the lawn was wet this morning and it didn’t rain last night”
—r v p v q = “either the lawn was not wet this morning or it rained last night or the

sprinkles came on last night”

2) Let p, q and r be the propositions with truth values T, F, T respectively. Evaluate the
following:

—rva(pAag),(pvg ATy

tva(pAqQ =Fva(TAF)=FvT=T (true)

“pvgAar(-rvqg=(TVvF)AF VvF)=FAF=F (false)

Note: To translate English sentences to the proposition symbolic form follow these steps:
Restate the given sentence into building block sentences.
Give the symbol to each sentence and substitute the symbols using connectives

For e.g. “if it is snowing then I will go to the beach”

Restate into “it is snowing” give it symbol p and “I will go to the beach” and give it

symbol q then we can write it as p — q.
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Propositional Equivalences

Given two propositions that differ in their syntax we may get the exactly same semantic
for both the proposition. If two propositions are semantically identical then we say those
two propositions are ‘“equivalent”. Such constructs are very useful in mathematical
reasoning where we can substitute such propositions to equivalent propositions to
construct mathematical arguments.

Tautology and Contradiction

A compound proposition that is always true, no matter what the truth values of the atomic
propositions that contain in it, is called a tautology. For e.g. p v —p is always true
(verify!!!).

A compound proposition that is always false is called contradiction. For e.g. p A —p is
always false (verify!!!).

A compound proposition that is neither a tautology nor a contradiction is called a
contingency.

Logical Equivalences

The compound propositions p and q are logically equivalent, denoted by p < q or p = q,
if proposition p <> q is a tautology.

Some important logical equivalences

pAT&p Identity law
pvF&p Identity law
pAF&F Domination law
pvTT Domination law
pApPESDP Idempotent law
pvpep Idempotent law
=(—p) & p Double negation law
PAQES QAP Commutative law
pvgqeqvp Commutative law
pAgQATESDPA(QAT) Associative law
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pvevrepvqyv
pA@@vD & (PAQVI(pATL
pv@Aan e pEvAa(v)
“(pAq) & pv—q
(pvg S pA—q
pA—peF

pvpeT
p—=qe-pvg
peqe(P—->9al@—p)
(pAq) —rep—(g—0)
P>9PAa(p—>—q & —p
p—qe—q—>p
pr(pvqep

pvpArqQ ep

Proving logical equivalence

Associative law
Distributive law
Distributive law
De Morgan’s law
De Morgan’s law
Trivial tautology
Trivial tautology
Implication
Equivalence
Exportation
Absurdity
Contrapositive
Absorption law

Absorption law

a) Truth Table (for (p > q) A (p > —q) & —p)

Discrete Structures

p —p q —q pP—q p—™q p—=gAp——q
T F T F T F F
T F F T F T F
F T T F T T T
F T F T T T T
b) Symbolic Derivation
Prove (pA—q) > (p>1) & —pvqVv-r
Solution:
PA7q) = (pe)
= (pA—q) Vv T (per) [Implication]

(pvq v (pe>r)

(—pvq)val(p—>1) A —p)]

(=pv @ Vval(=pvr) A(-rVp)]

[De Morgan’s law]

[Biconditional equivalence]

[Implication]
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(—pvq)Vval{(=pvr)Aa-r}vVv{(=pVvr)Ap}]

Discrete Structures

[Distributive law]

—pvq)val{-rAa—p)vEA-)}V{pA—p Vv(CAp)}] [Distributive law]

pva val{Gra—p)vE}v{Fv(rAp)}]

(=pv @ Vval(=rAa—p) v Ap)]
(pvq v(=(rAaqg)A—(rAp)
(qv=p) v ((rvp)A=(rAp))

qv (=p v ((rvp) A=(rAp)))

qVv ((=p Vv (rvp)A(=p va(r Ap)))
qVv (((kpVvp) V) A (Tp v(r Ap)))
qVv (T v A(p v Ap))

qV (T A(=p v Ap))

q Vv (p v(r A p))

q Vv (=p v(—r Vv —p))

q Vv ((=pVv—p) v

qV(=pv-m)

pvqVv-—r

[Trivial tautology]

[Identity law]

[De Morgan’s law]
[Commutative and Double negation]
[Associative law]

[Distributive law]

[Associative and commutative laws]
[Trivial tautology]

[Domination law]

[Identity law]

[De Morgan’s law]

[Commutative and Associative laws]
[Idempotent law]

[Associative and Commutative laws]

Proved.

Predicate

We studied propositional logic. Lets take a statement “x > 57 is this statement a
proposition? The answer is no. Whenever the statements have variable(s) in them we
cannot say those statements as a proposition. The question here is can we make such
statements to propositions? The answer here is yes.

In the above statement there are two parts one is the variable part called “subject” and
another is relation part “>5" called “predicate”. We can denote the statement “x>5" by
P(x) where P is predicate “>5" and x is the variable. We also call P as a propositional
function where P(x) gives value of P at x. Once value is assigned to the propositional
function then we can tell whether it is true or false i.e. a proposition.

For e.g. if we put the value of x as 3 and 7 then we can conclude that P(3) is false since 3

is not greater than 5 and p(7) is true since 7 is greater than 5.
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We can also denote a statements with more than one variable using predicate like for the
statement “Xx = y” we can write P(x,y) such that P is the relation “equals to” . Similarly
the statements with higher number of variables can be expressed.

Remember: The logic involving predicates is called Predicate Logic or Predicate
calculus similar to logic involving propositions is Propositional Logic or Propositional

Calculus

Quantifiers

Quantifiers are the tools to make the propositional function a proposition. Construction of
propositions from the predicates using quantifiers is called quantification. The variables
that appear in the statement can take different possible values and all the possible values
that the variable can take forms a domain called “Universe of Discourse” or “Universal
set”. We study two types of quantifier Universal quantifier and Existential quantifier.
Universal Quantifier

Universal quantifier, denoted by V, is used for universal quantification. The universal
quantification of P(x), denoted by Vx P(x), is a proposition “P(x) is true for all the values
of x in the universe of discourse”.

We can represent the universal quantification by using the English language like:

“for all x P(x) holds” or “for every x P(x) holds” or “for each x P(x) holds”.

Example:

Take universe of discourse a set of all students of CDCSIT.

P(x) represents x takes graphics class.

Here universal quantification is Vx P(x), i.e. “all students of CDCSIT take graphics
class”, is a proposition.

The universal quantification is conjunction of all the propositions that are obtained by
assigning the value of the variable in the predicate. Going back to above example if
universe of discourse is a set {ram, shyam, hari, sita} then the truth value of the universal
quantification is given by P(ram) A P(shyam) A P(hari) A P(sita) i.e. it is true only if all

the atomic propositions are true.
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Existential Quantifier

Universal quantifier, denoted by 3, is used for existential quantification. The existential
quantification of P(x), denoted by 3x P(x), is a proposition “P(x) is true for some values
of x in the universe of discourse”. The other forms of representation include “there exists
x such that P(x) is true” or “ P(x) is true for at least one x”.

Example:

For the same problem given in universal quantification 3x P(x) is a proposition is
represent like ““ some students of CDCSIT take graphics class”.

The existential quantification is the disjunction of all the propositions that are obtained by
assigning the values of the variable from the universe of discourse. So the above example
is equivalent to P(ram) v P(shyam) v P(hari) v P(sita), where all the instances of
variable are as in example of universal quantification. Here if at least one of the students
takes graphics class then the existential quantification results true.

Free and Bound Variables

When the variable is assigned a value or it is quantified it is called bound variable. If the
variable is not bounded then it is called free variable. A part of a logical expression that is
quantified is given by the scope of the quantifier. We use parenthesis to give scope of the
quantifier. For e.g. Vx (P(x)) — q is not same as Vx (P(x) — q)

Example:

P(x,y) has two free variables x and y.

P(2, y) has one bound variable 2 and one free variable y.

P(2,y) where y = 4, is bounding the variable y also.

VX P(x) has a bound variable x.

Vx P(x,y) has one bound variable x and one free variable y.

Expression with no free variable is a proposition.

Expression with at least one free variable is a predicate only.

Order of Quantification

Order of quantification goes from the left to right. If we have a quantified proposition

involving two variable (nested quantifier) then the order must be considered.
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Example: Let L(x,y) denotes x loves y where universe of discourse for x, y is set of all
people in the world. Translate Vx3dyL(x,y), dyVx L(x,y), 3IxVy L(x,y), Vy3axL(x,y),
VxVyL(x,y) and 3x3yL(x,y) into English.

Solution:

VxdyL(x,y) : [for all x there is some y such that x loves y i.e. everybody loves someone.
This is false when there is someone who doesn’t love any one]

JyVx L(x,y): [for some y all x love y i.e. there is a people who is loved by everyone.
This is false when there is no person who is loved.]

JxVy L(x,y): [There is some x such that x loves all y i.e. there is someone who loves all
the people. This is false when all people do not love some people]

Vy3dxL(x,y): [for all y there is x who loves y i.e. everyone has someone who loves them.
When this is false? (try yourself)]

VxVyL(x,y): [for all x, x loves all the y i.e. everybody loves everyone. When this is false
? (try yourself)]

Ix3dyL(x,y): [There is some x such that he loves some y i.e. someone loves somebody.
When this is false? (try yourself)]

Negation of Quantifies Expression

Let P(x) denotes x is lovely, universe of discourse for x is girls in Kathmandu. Then,

Vx P(x) is every girl in Kathmandu is lovely. If we want to negate it the meaning would
be like there is a girl in Kathmandu who is not lovely i.e. 3x—P(x).

JxP(x) is at least a girl in Kathmandu is lovely. The opposite for this (negation) would be
no girls in Kathmandu are lovely. i.e. VX —P(x).

The negation of the nested quantifier can be done by successively negating the quantifier
using the above negation rule for single quantifier for e.g. = (Vy3axP(x,y)) is
Jy(—3xP(x,y)) = yVx— P(x.y).

Translating the Sentences into Logical Expression

Example 1

Translate “not every integer is even” where the universe of discourse is set of integers.
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Solution:

Let E(x) denotes x is even. —VxE(x)

Example 2

Translate “if a person is female and is a parent, then this person is someone’s mother”
into logical expression, Universe of discourse is set of all people.

Solution:

Let F(x) denotes x is female, P(x) denotes x is a parent and M(X,y) denotes x is a mother
of y. then the logical expression for above sentence is Vx3y (F(x) A P(x) — M(x,y))
Example 3

Translate “everyone has exactly one best friend” into logical expression where universe
of discourse is set of all people.

Solution:

Let B(x,y) denotes y is best friend of x then Vx3y(B(x,y) A Vz (B(x,z) = (y = z)) is the

solution.

Sets and Set Operations

Set is a very important concept in mathematics. In computer science also we deal with set
in most of the case. For e.g. if we are dealing with relations in database then they are sets
ordered collection of elements, similarly we can view graph as a set. Set is a collection of
zero or more objects (or elements or members), the elements need not be ordered. If we
denote set by S and some element from the set by e then we say “e belongs to S” or “S
contains €” or in symbol we can write e € S. fore.g. V = {a, e, i, 0, u} is a set of vowels
and 1 € V, if some object doesn’t belong to the set we write it as “ does not belong to” i.e.
sayx¢ V;C={b,c,d,f, g, h,j,k,1,m,n,p,q,1,5,t, v, w, y, ) is a set of consonants.
Representations of Sets

Some of the ways of representing a set are:

Listing of elements: Set of vowels is {a, e, i, 0, u}.

Set builder form: here propertied of the members of the set is described for e.g. R = {x |
X is a real number}

Recursive formula: the elements of set are defined using the previous element of the set
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that is known. For e.g. set of natural numbers can be represented as N = {x, = x,.; +1,
where xo =0}.

Venn diagram: graphical representation of set. For e.g. set of vowel as given above can

be represented as: U

In the above diagram the circle represents the set of vowels where as the enclosed
rectangle represents the “universe of discourse” or “universe”.

Some Definitions

Subset: Let A and B be two sets. Then A is said to be subset of B if every elements of A
is an element of B. A is said to be proper subset of B if A is subset of B and there is at
least one element in B that is not in A. Symbolically subset is represented as A < B to
denote that A is subset of B and A < B to denote that A is proper subset of B.

Some subsets related properties
AcA;fAcBandBcCthenAcC; fAcBand BcCthen AcC;If AcB and
A & C then B & C, where & means “is not contained in”. As subset is defined above
superset can be defined in similar manner where in the above definition B is the superset
of A denoted by B o A for superset and B © A for proper superset.

Equal Sets: Two sets A and B are equal if and only if they contain exactly same
elements. In other words if A € B and B c A then A = B.

Fore.g. A={1,2,3,4,5}and B={2,5, 4, 1, 3} are equal sets.

Empty set: The set that contains no element is called empty set and denoted by <. It is
also called null set. We have & = {} but & # {J}.

Cardinality: For the set S, if there are exactly n distinct elements in S where n is a
number then we say that cardinality of the set S is n denoted by ISI.

Fore.g. 131 =0; I{a,b,b,c,a}l=3;1{{a, b}, {a,b,c}}I=3

If n € N then the set is finite otherwise, it is infinite.
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Power Set: Given a set S, power set denoted by P(S) is the set that contains all the
subsets of the set S. Symbolically we can write P(S) = {x | x < S}. For e.g. power set for
the set {2, 3} is {Q, {2}, {3}, {2,3}}. The number of elements in the power set of set
having n elements is 2" Remember: @is member of all power set.

Set Operations

Union Operator: Given two sets A and B, the union of set A and set B is the set that
contains those elements that are either in A or in B, or in both, denoted by A U B.
Symbolically, we write union of Aand Bas: AUB={xIxe Avxe B}.

Example:

{2,3}u{a,b,c} ={2,3,a,b,c}.

{1,2,3,4,5} U {3,4,5,6,7} ={1,2,3,4,5,6,7}. This can be shown in Venn diagram

Gy

Intersection Operator: Given two sets A and B, the intersection of set A and set B is the

as U

set that contains those elements that are in both A and B, denoted by A n B.
Symbolically, we write intersection of Aand Bas: AnNB={xIxe AAxe B}.
Example:

{2,3}n{a,b,c}={}.

{1,2,3,4,5} n{3,4,5,6,7} ={3,4,5}. This can be shown in Venn diagram as

U

Disjoint Set: Two sets are disjoint if the intersection of two sets is null set.
Set Difference: Given two sets A and B, The difference of A and B is the set that
contains all the elements that are in A but not in B, denoted by A —B. This difference is

also called complement of B with respect to A. Symbolically we write difference of A
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andBasA-B={xlxe AAxe¢ B}.
Examples:

A={2,4,a,r} and B=1{1, 2, a, s, t} then A - B = {4, r}. Venn diagram is given below:

Complement: Complement of set S is denoted by U — S or S°, where U is the universal

U

set, is the of difference of universal set U and set S. Symbolically complement is written

asS’ ={xIlxeg S}.
s &

In the Venn diagram shown above, the outer part from the oval is complement of S.
Set Identities

The set identities that we learn here is similar to that of propositional logic.

AnU =A Identity law
Aud=A Identity law

AN =0 Domination law
AulU=U Domination law
ANnA=A Idempotent law
AUA=A Idempotent law
A’y =A Complementation law
ANB=BnNnA Commutative law
AUB=BUA Commutative law
ANB)NnC=AnBNC) Associative law
AuB)UC=AUuUBUC) Associative law

ANnBulC)=(AnB)UANC(C) Distributive law
AuBNC)=(AuB)Nn(AuUCO) Distributive law
(ANBY=A"uUB’ De Morgan’s law
(AuB)Y=A"NnPB’ De Morgan’s law
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Generalized Union and Intersection

Since union and intersection of the sets holds associativity we can combine the sets with
same operators in any order. The union of a collection of sets is the set that contains those

elements that are members of at least one set in the collection. The notation we use for

this operation is A; U Ay U ... UA, = U A The intersection of the collection of the sets
i=1

is the set that contains those elements that are in all the sets in the collection. We

represent generalized intersection as A; N A, N ... NA, = ﬂ A
i=1

Proving Set Identities
Using Mutual Subsets: Show A B and B < A to show A =B.
Example: Show AN (BuC)=(ANnB)U(AnC).
Stepl: Assume x € A N (B U C) and try to show x € (AN B) U (AN C).
Then we know, x € A and x € B or x € C, or both.
Sincexe Aandxe B,xe (AnB).Hencexe (ANnB)UANCQC).
Sincexe Aandxe C,xe (ANC).Hencexe (ANnB)UANCQC).
Therefore, AN (BUC)c(ANnB)UANCO).
Step 2: Assume x € (AN B) U(ANC)and try to showxe An (Bu ).
Then we know x € (AN B), thatisxe Aandxe B,orxe (AN C), thatisx € A and X
€ C, or both. In any case we have x € A as true.
Sincexe B,xe (BUC). Soxe An(BuUCO).
Sincexe C,xe BUC(C).Soxe AnBuUO).
Therefore,  ANB)UANC)cAnBuUC).
From step 1 andstep2 AN (BUC)=(ANnB)U(ANC).
Using Logical Equivalences: represent the set to the set builder form and apply logical
equivalence transformations.
Example: Show (AU B) =A’ N B’.
We can denote (A U B)’ ={xIxe¢ AUB} ={xI=(xe AuB)}
={xl(xe Avxe B)}] ={xlx¢ AAaxg B)}
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={xlxe A AxeB)} ={xlxe A nB’}
=A'NnB’
Membership Table: Like truth table you have studied earlier for propositional logic. Use
1 to denote set membership and 0 otherwise.

Example: Show A - (A -B)=A N B.

A B A-B A-(A-B) ANB
1 1 0 1 1
1 0 1 0 0
0 1 0 0 0
0 0 0 0 0

Cartesian Products

Sets are unordered collections of objects but sometime we need ordered collections. Such
ordered collections can be obtained from ordered n- tuples.

Ordered n- tuple: The ordered n tuple (aj, ay, ..., a,) is the ordered collection where a; is
the first element, a, is the second element and so on .... Two ordered n — tuples are equal
if and only if they have each corresponding pair of their elements is equal i.e. (a;, ay, ...,
ap) = (by, by, ..., by)ifand only if a; = by, a, = by, ..., a, = by.

Cartesian Product: Given sets A and B. The Cartesian product of A and B is the set of
all ordered pairs (a, b) where a € A and be B. The Cartesian product of A and B is
denoted by A x B. Symbolically, we can write itas A X B = {(a,b) | a €A A be B}
Example: Let A={a, b, c} and B = {1, 2, 3} then

AXB={(a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (b, 3), (c, 1), (c, 2), (c, 3)}

Remember: A XB #B XA unless A = Dor B= Jor A =B (verify!!!)

Similarly Cartesian product of more than two sets can be defined as, Cartesian product of
Aj, Ay, ..., A, is the set of ordered n-tuples (aj, ay, ..., a,) where each a; € A, fori =1, 2,
..., n. Itis denoted by A;x AxXx ...X A,.

Symbolically, A;x Axx ...x A, = {(al, ap, ..., ay) laj € Ay, fori=1,2, ..., n}

Example: A = {1,2}, B={2} and C ={a, b, ¢} then
AXxBxC={(1,2,a),(1,2,b),(1,2,¢),(2,2,a),(2,2,b), (2,2, ¢)}
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Relations (Intro)

Binary Relation: Given sets A and B, a binary relation from A to B is a subset of A X B
i.e. a binary relation from A to B is a set R of ordered pairs where first element of each
ordered pair belongs to set A and the second element belongs to the set B. the notation
aRb is used to denote that (a, b) € R and we say a is related to b by R.

Example:

A =1{1,2,3} B={a, b} then relations from the above two sets can be

R={(1,a),(2,a)} S={(1,a), (1,b), (2, a), (2, b)} and others are also possible.

Relations on a Set: A relation on the set A is the relation from A to A i.e. it is the subset
of AXA.

Example: Let A = {0, 1, 2, 3, 4} the ordered pairs that are in the relation R = {(a, b) | a =
b} is given by R = {(0, 0), (1, 1), (2, 2), (3, 3), (4, 4)}, We can view this relation as

0—»0 Rilg 1 2 3 4
0 |#
11
1 #
o )
2 #
33
3 #
4—P 4
4 #

Properties of Relations

Reflexive: A relation R on a set A is called reflexive if (a, a) € R for every element a €
A. For e.g. relation < on set of integers is reflexive.

Symmetric: A relation R on set A is called symmetric if (a, b) € R then (b, a) € R. for a,
b € A. For e.g. relation = on set of integers is symmetric.

Transitive: A relation R on a set A is called transitive if (a, b) € R and (b, ¢) € R then (a,
c) € R, fora, b, c € A. For e.g. relation < on set of integers is transitive.

Antisymmetric: A relation R on a set A is called antisymmetric if (a, b) € R and (b, a) €

R then a=b, for a, b € A. For e.g. relation > on set of integers is antisymmetric.
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Asymmetric: A relation R on a set A is called asymmetric if (a, b) € R then (b, a) ¢ R,
fora, b € A. For e.g. relation > on set of integers is asymmetric.
Irreflexive: A relation R on a set A is called irreflexive if for every a € A, (a, a) ¢ R. For

e.g. relation > on set of integers is irreflexive.
Combining Relations

Relation from A to B is a subset of A X B so any operations that are operable in sets are
also operable in relations (see notes on sets for detail).

Composite Relation: Let R and S be the relations from A to B and B to C respectively.
The composite relation of R and S is a set having ordered pairs (a, c), where ac A and c
€ C, and for which there exists an element b € B such that (a, b) € R and (b, ¢) € . The
composite relation of R and S is denoted by SoR.

Example: Let R = {(a, 1), (a, 2), (b, 1)} and S = {(1, x), (2, y)} where A = {a, b}, B ={1,
2} and C = {x, y}. Then, SoR = {(a, x), (a, y), (b, X)}

On the basis of composite relation the powers of a relation R can be defined as, The
powers R", n =1, 2, 3, ...are inductively defined as R' = R and R™*' = R"0R.

Note: More on the relations will be covered later

Functions

Sometimes we assign each element form a set to the elements of other set that may be the
same as the first. For e.g. each worker working on the factory to the set of the works. This
kind of assignment gives rise to the function.

Function: given two A and B, A function f from A to B is an assignment of unique
element of B to each element of A. if b is the unique element of B assigned by the
function f to the element a of A the we write f(a) = b. A function from A to B is written
as f: A — B. Given a function f: A — B where f(a) = b then we define following terms:
Domain: Set A is the domain of function f.

Codomain: Set B is the codomain of function f.

Image: b is the image of a.

Pre-image: a is the pre-image of b.

Range: Set of all images of elements of A is range.
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Types of Functions

One - to — One (Injective) Function: A function f is one-to-one, if and only if f(x) =
f(y) implies x =y for all x and y in the domain of f.

Example: f(x) = x2 from set of integers to the set of integers is not an injection because
f(-1) =1(1) = 1 does not imply -1 = 1.

The pictorial representation of one-to-one functions looks like:
@

°
Onto (Surjective) Function: A function f is surjective or onto if and only if for every
element b € B there is an element a € A such that f(a) = b.

Example: The function f(x) = x +1 from the set of integers to the set of integers is onto
because for every integer b there is an integer a such that f(a) = b, where each a = b-1.

The pictorial representation of surjection is as below:
)

)
One-to-One Correspondence (Bijective Function): A function is bijection if it is both
onto and one-to-one.
Example: The function f(x) = x +1 from the set of integers to the set of integers is
bijection since it is one-to-one (How?) and onto (see above).

The pictorial representation of bijection is as below:

Inverse Function: given a bijective function f: A — B, the inverse of function f is
denoted by f " assigns each element of B to the unique element of A such that f(a) = b. so
we can write f ! (b) = a when f(a) = b.

Example: The function f(x) = x +1 from the set of integers to the set of integers is

bijection (see above) hence we can have inverse of it and it is denoted as f T(x)=x-1.
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Growth of Functions

Complexity analysis of an algorithm is very hard if we try to analyze exact. we know that
the complexity (worst, best, or average) of an algorithm is the mathematical function of
the size of the input. So if we analyze the algorithm in terms of bound (upper and lower)
then it would be easier i.e. understanding the growth of the function is easier. For this

purpose we need the concept of asymptotic notations.
Big Oh (O) notation

When we have only asymptotic upper bound then we use O notation. A function f(x) =
O(g(x)) (read as f(x) is big oh of g(x) ) iff there exists two positive constants ¢ and Xg
such that for all x >= xp, 0 <= f(x) <= c*g(x)

The above relation says that g(x) is an upper bound of f(x)

Some properties:

Transitivity : f(x) = O(g(x)) & g(x) = O(h(x)) = f(x) = O(h(x))

Reflexivity: f(x) = O(f(x))

O(1) is used to denote constants.
¢ .g(n)

f(n)
For all values of n >= n,, plot shows /\/y

clearly that f(n) lies below or on the curve|

of c*g(n)
Do F(n) = O(g(n))
Examples
1. f(n) =3n"+4n+7
g(n) = n’, then prove that f(n) = O(g(n)).
Proof: let us choose ¢ and ng values as 14 and 1 respectively then we can have
f(n) <= c*g(n), n>=n0 as
3n’ +4n + 7 <= 14*n* for all n >= 1

the above inequality is trivially true

hence f(n) = O(g(n))
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2. Prove that n log (n3) is O(\/n3)).
Proof: we have n log (n°) = 3n log n
again, Vn®=n \/n,
if we can prove log n = O(\n) then problem is solved
because n log n = n O(\n) that gives the question again.
We can remember the fact that log * nis O (nb) for all a,b>0.
In our problema=1andb="2,
hence log n = O(\/n).
So by knowing log n = O(Wn) we proved that
n log (n3) = O(\/ n3)).
3. Is 2™ =0(2" ?
Is 2= 02" ?

Big Omega (£2) notation

Big omega notation gives asymptotic lower bound. A function f(x) = Q(g(x)) (read as f(x)
is big omega of g(x) ) iff there exists two positive constants ¢ and X, such that for all x
>= Xo,

0 <= c*g(x) <= f(x).

The above relation says that g(x) is an lower bound of f(x).

some properties:

Transitivity : f(x) = O(g(x)) & g(x) = O(h(x)) = f(x) = O(h(x))

Reflexivity: f(x) = O(f(x))
f(n)
For all values of n >= ny, plot shows clearly
that f(n) lies above or on the curve of c*g(n). /\_/ c.g(n)
n

Examples 10 Fn) = Q(gm))

1. f(n) =3n°+4n+7
g(n) = n’, then prove that f(n) = Q(g(n)).
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Proof: let us choose c and ng values as 1 and 1, respectively then we can have
f(n) >= c*g(n), n>=n0 as

3n® +4n + 7 >= 1*n* forall n >= 1

the above inequality is trivially true

hence f(n) = Q(g(n))
Big Theta (©) notation

When we need asymptotically tight bound then we use notation. A function f(x) = (g(x))
(read as f(x) is big theta of g(x) ) iff there exists three positive constants c;, ¢; and xo such
that for all x >= xp, 0 <= ¢;*g(x) <= f(X) <= cx*g(x)

The above relation says that f(x) is order of g(x)

some properties:

Transitivity : f(x) = O (g(x)) & g(x) = 0O (h(x)) = {(x) = 0O (h(x))

Reflexivity: f(x) = 0@ (f(x))

Symmetry: f(x) = © g(x) iff g(x) = © f(x) C, .g(n)

f(n)
For all values of n >= n,, plot shows clearly //
that f(n) lies between c;* g(n)and cy*g(n). 7[ C; .g(n)
o

Mo F(n) = O(g(n))

Examples

1. f(n) =3n°+4n+7
g(n) = n’, then prove that f(n) =  (g(n)).
Proof: let us choose cl, c2 and ny values as 14, 1 and 1 respectively then we can
have,
f(n) <= c1*g(n), n>=n0 as 3n” + 4n + 7 <= 14*n? , and
f(n) >= c2*g(n), n>=n0 as 3n% + 4n + 7 >= 1*n’
for all n >= 1(in both cases).
So c2*g(n) <= f(n) <= c1*g(n) is trivial.

Hence f(n) = O (g(n)).

Downloaded from CSIT Tutor



Chapter - Introduction ' Discrete Structures

2. Show (n + al)b = @(nb), for any real constants a and b, where b>0.
Here, using Binomial theorem for expanding (n + a)°, we get ,
C(b,0)n" + C(b,1)n""a + ... + C(b,b-1)na"" + C(b,b)a"
we can obtain some constants such that (n + a)® <= ¢;*(n"), for all n >=ng
and
(n+ a)b >= cz*(nb), for all n >=ng_here we may take c; = 2° ¢, =1ng=lal,
since 1 #(n°) <= (n + a)* <= 2" *(n").
Hence the problem is solved.

Why ¢; = 2°? since X C(nk) = 2* where k=0 10 n.
Little Oh (0) notation

Little oh (o) notation is used to denote the upper bound that is not asymptotically tight. A
function f(x) = o(g(x)) (read as f(x) is little oh of g(x) ) iff for any positive constant ¢
there exists positive constant Xy such that for all x >= x,

0 <= f(x) < c*g(x)

for example 4x* is O(x4) but not o(x4).

Alternatively f(x) is little oh of g(x) if ™ f(x) _ 0
s g(X)

Note: transitivity is satisfied.

Little Omega (®) notation

Little omega (0) notation is used to denote the lower bound that is not asymptotically
tight. A function f(x) = w(g(x)) (read as f(x) is little omega of g(x) ) iff for any positive
constant ¢ there exists positive constant Xy such that for all x >= x,,

0 <=c*g(x) < f(x) .

for example x/7 is o;)(xz) but not o;)(x3).

Alternatively f(x) is little omega of g(x) if "™ f(x) __
x> @(X)

Note: transitivity is satisfied.
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Algorithm

An algorithm is a finite set of instructions executed in finite time for problem solving or
performing computation. To represent an algorithm we use English language however for
the simplicity we use pseudo code that can represent an algorithm in clear manner like in
English language and gives the implementation view as in the programming languages.
Example:

Write an algorithm for finding factorial of the given number.

Algorithm:
fact(n)
{
fact = 1;
for(i=1;i<=n; i++)
fact = fact*i;
return fact;
/
See the above algorithm is for getting the factorial of n. The algorithm first assigns the
value 1 to the variable fact and then until the n is reached the fact is assigned a value fact

* 1 where value of 1 is from 1 to n. At last the value fact is returned.

Algorithm Properties

Input/Output: An algorithm has input or set of inputs values from the set that has
possible input values and for each set of inputs an algorithm produces the solution of the
problem that are in the set of output values.

Definiteness: Each step must be clear and unambiguous.

Correctness: An algorithm produced output must be correct for each set of input values.
Finiteness: The algorithm must terminate after finite amount of time for every possible
set of input values.

Effectiveness: Each step must be executable in finite time.
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Generality: The devised algorithm must be capable of solving the problem of similar

kind for all possible inputs.

The algorithm provided above i.e fact(n) has all the properties defined above. Input for an
algorithm is any positive integers and the output is the factorial of the given number.
Each step is clear since assignments, finite loop, and the arithmetic operations and jump
statements are unambiguous. Correctness requires rigorous explanation and you will read
this later at this point just see that each input gives its corresponding factorial value.
When the return statement is reached the algorithm terminates and each step terminates in
finite time all other steps other than loop are simple and they need no explanation. In case
of loop when the value of i reaches n+1 then the loop terminates. An algorithm is general

since it can work out for every positive integer.

Complexity of Algorithms

When an algorithm is designed it must be analyzed for its efficiency. The efficiency of an
algorithm is measured in terms of complexity. The complexity of algorithms is
mentioned in terms of resource needed by the algorithm. We generally consider two
kinds of resources used by an algorithm time and space. The measure of time required by
an algorithm to run is given by time complexity and the measure of space (computer
memory) required by an algorithm is given by space complexity. Here in this course we
generally discuss time complexity of an algorithm that is given by the number of
operations needed by an algorithm for given set of inputs. Since actual time required may
vary from computers to computers we use number of operations required to measure the
time complexity.

Example (Time complexity):

In the above algorithm of finding factorial we can find time complexity by enumerating
the number of operations required for the algorithm to obtain the factorial of n. you can
see that the assignment of the variable fact is done one time, the for loop executes for n+1
time and the statement inside the for loop executes for n times and the last operation that

is due to the return statement executes single time. The total time in terms of number of
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operations required can be written as
Tmn)=1+(n+1)+n+1=2n+3
You have already read growth of functions so denoting time complexity in terms of big

oh (O) notation for the above algorithm is O(n) i.e. linear time complexity.

Example Binary Search Algorithm:
The binary search problem says that given the input sequence in some order (ascending
or descending in this example we take ascending order) we must be able to find whether
the given element is in the set or not. The algorithm for binary search problem is given
below:
Algorithm:
binsearch(key // this is the value to be searched, list[] // this is the list of the elements in
ascending order)
{
left = 0;
right = n // here n is the size of the array list
while left < right
{
mid = floor((left + right)/2);
if(key > list[mid]
left = mid + 1;
else
right = mid;
/
if( key = = list[left])
return left;
else

return —1;
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Analysis: in the above algorithm the statements left = 0 and right = n both take a unit
time if (key > list[left] ... else return —1 takes 2 steps (one condition check and next
statement run). So the portion of while will dominate the running time. If the number of
iterations of while loop is obtained then our problem is solved. We can observe that
inside the while loop each time the problem is halved (more or less). So if we consider
the size of the input n be the power of 2 for simplicity i.e. say 2* = n. so at he first
execution of loop search is to be done for the size of 2k'1, at the second iteration search
space is reduced to 2%2.... Until the search space has only one element this violates the
condition left < right (verify!!!). so we can write the above steps as
T(n) =1+ 1+ k(steps inside the loop) + 2

=k(3) + 4 =3k + 4 = O(k) (how?)
Since we have assumed 2" = n, k = logn
so the complexity is O(logn). If n is not a power of 2 then we can have some numbers
which is power of 2 and greater than n so that the asymptotic behavior is same since the

number of operations only differ by some constant.

Some commonly used functions in Algorithms Complexity

f(x) =0() constant

f(x) = C*log x logarithmic

f(x) = C*x linear

f(x) = C*x log x linearithmic
f(x) = C#x? quadratic

f(x) = C* x° cubic

f(x) = C* x* polynomial in k
1.f(x) = C* k" exponential in k
Order of growth

O(1)< C*log x< C*x < C*x log x < C*x°< C*x’< C*x(k >3)< C*k* (k> 1)

Value of k should be in increasing order.
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Some Definitions

Tractable: A problem that is solvable by algorithm with polynomial worst-case
complexity.

Intractable: A problem that cannot be solved using worst-case polynomial time
algorithm. Many problems in use are thought to be intractable but due to the simple
nature of the input instances most of the time the average case behavior of an algorithm is
used. Some time instead of exact solution approximate solutions are considered.
Unsolvable: The problem with no existence of algorithms to solve them. For e.g. halting
problem proposed by Alan Turing.

Class P: Tractable problems.

Class NP: the problems for which the solution can be checked in polynomial time (The
solution must exist already).

NP-complete problems: this is the class of problems where if any one of the problem is
solved in worst case polynomial time then all other of that class can be solved in worst

case polynomial time.

Divisibility

If a and b are integers where a # 0, we say a divides b if there is an integer ¢ such that b =
ac. When a divides b then we say a is a factor of b and the b is a multiple of a. notational
representation alb is for a divides b. for e.g. 4/12 means 4 divides 12 where a=4,b =12

and c = 3.

Theorem 1:
Let a,b, and c be integers. Then
1.if alb and alc, then al(b+c);
2.if alb, then albc for all integers c;

3.if alb and blc, then alc.
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Proof:

l1.given that alb and alc, so by the definition of divisibility we can say that there are
integers p and q such that b = ap and ¢ = aq. From this we can write,

b+c=ap+aq

i.e. b+c = a(p+q)

So form this we can say that a divides b+c.

2.given that alb, by the definition of divisibility we can say there is an integer p such that
b = ap so for any integer ¢ we can write,

bc = apc this means a divides bc since pc is an integer too.

3.given that alb and blc, by the definition of divisibility we have integers p and q such that
b=apandc=Dbq
i.e c=apq

Since pq is an integer we conclude that a divides c.

Proved.

Lemma 1: If a, b, and c are positive integers such that gcd(a,b) = 1 and albc, then alc.
Proof:

gcd(a,b) can be written as linear combination with integer coefficient of a and b as

sa + tb ( this is a theorem). Since gcd(a,b) = 1, we have sa + tb =1.

Multiplying both side by c,

sac + tbc =c.

From theorem 1 (2) above altbc since we have albc. We have alsac (trivial). Since alsac

and altbc, we have alc fro theorem 1 (1).

Proved.
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Primes

A positive integer grater than 1 and divisible by only 1 or itself is called prime. If the
positive integer is not a prime then it is a composite number. For e.g. 2, 3, 5, 7, 11, 13,

17,19, 23, 29, 31, and 37.

Lemma 2:

If pis a prime and pla;, a, ..., a, where each a; is an integer, then pla;, for some 1i.

Proof:

Basis Step: for n =1, we have pla; so pla; is true for i =1 (this is trivial case).

Induction Hypothesis: Assume that lemma is true for n.

Inductive Step: for n+1 we have pla;, a;. ..., a,, ay+1.we have ged(p, aj) =1 orp forall i =
1,2, ....,n.if gcd(p, a;) = 1, then from the lemma 1 above pla,;. If ged(p, a;) = p, then

pla;, ap, ..., a,. (this is induction hypothesis) so pla;, for some i < n. Hence the proof.

Lemma 3:

Prime factorization of a positive integer in nondecreasing order of primes is unique.
Proof:

Suppose that n, a positive integer, can be written as product of prime numbers in two
different ways n = py, p2, ..., pr and n =q, qa, ..., qs, €ach p; and p; are primes such that
pr<p:<..<prandn=q; < <...< (s

Removing all the common primes from the two factorization we have

Pits Pi2> «-+5 Piu = qj15 4j25 - -5 Qjvs

Here no prime occurs on both sides and u, v are positive integers. From the lemma 2
pitlgjk, for some k. But this is impossible since no prime divides another prime. Hence

there can be at most one factorization of n into primes in nondecreasing order.
Lemma 4:

Every positive integer can be written as the product of primes. (Here, a product can have

zero, one, or more than one prime factor.)
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Proof:

Let P(n) be the proposition that positive integer can be written as the products of primes.
Basis Step: p(1) is true since 1 is the product of no prime. Similarly P(2) is true, since 2
can be written as the product of one prime i.e. 2 itself.

Induction Hypothesis: Assume that P(k) is true for all positive integers k where k < n.
Inductive Step: if we can prove that p(n+1) is true then our proof is done. Here we have
two cases. If n+1 is a prime number then it can be written as product of prime number
and that is itself. If n+1 is a composite number then we can write it as product of two
positive integers. Let those positive integers be p and q where 2 < p < q < n+1, then from
the induction hypothesis both a and b has prime factorization. Hence n + 1 has prime
factorization that is combination of prime factorization of a and prime factorization of b.

This proofs that every integer has a prime factorization.

Theorem 2: The Fundamental Theorem of Arithmetic

Every positive integer can be written uniquely as the product of primes, where the prime
factors are written in order of increasing size. (Here, a product can have zero, one, or
more than one prime factor.)

Proof:

From lemma 3 and lemma 4 above, we complete the proof.

Division Algorithm
Let a be an integer and d a positive integer. Then there are unique integers q and r, with O
<r < d, such that a = dq + r. here a is called dividend, d is called divisor, q is called

quotient, and r is called remainder. For e.g. 305(dividend) = 10(divisor)*30(quotient) +

S(remainder).

GCD and LCM

Let a and b be integers, not both zero. The largest integer d such that dla and dIb is called

the greatest common divisor (gcd) of a and b. we denote gcd of a and b by gcd(a,b). a
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and b are relatively prime if gcd(a,b) = 1 for e.g. 3 and 5 are relatively prime (how?).
Similarly the integers a;, a, ..., a, are pairwise relatively prime if ged(ai, aj) = 1
whenever 1 <i < j < n. The least common multiple (Ilcm) of the positive integers a and b

is the smallest positive integer that is divisible by both a and b. It is denoted by Icm(a,b).

Modular Arithmetic

If a is an integer and m is a positive integer then a mod m is the remainder when a is
divided by m. so from the definition of the remainder that a mod m is the integer r such
thata=qm +r and 0 <r < m. for e.g. 24 mod 5 = 4 since 24 = 4*5 + 4.

If a and b are integers and m is a positive integer, then a is congruent to b modulo m if m
divides a-b. We use the notation a = b(mod m) to indicate that a is congruent to b modulo

m. for e.g. 23 is congruent to 11 modulo 2 since 23 —11 = 12 is divisible by 2.

[See the applications of congruences on hashing, pseudorandom numbers and

cryptology.]

Euclidean Algorithm

Finding gcd(a,b) using the prime factorization is inefficient. The algorithm called
Euclidean Algorithm is an algorithm that finds the gcd(a,b) in efficient manner. The
successive division is used to reduce the problem if finding gcd(a,b) to the same problem
of smaller integers, until one of the integers is zero. This algorithm used the result from
the following lemma.

Lemma S: Let a = bq + 1, where a, b, q, and r are integers. Then gcd(a,b) = ged(b,r)
Proof:

For the expression gcd(a,b) = ged(b,r) to be true the greatest common divisor of a,b and
b.r must be same. Let d be the divisor of both a and b then we can say that a — bq =r is
divided by d (from theorem 1 above). Hence any common divisor of a and b are common
divisor of b and r. Similarly if d is the divisor of b and r then d also divides bq + r =a

(how?). Hence, any common divisor of b and r divides a and b also. Hence, the proof.
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Algorithm:
ged(a,b) // a and b are positive integers
{

X=a;
y=b;

while (y!=0)
{

r=xmod y;
xX=y;

y=r

/

/

Analysis:

In the later chapter we will see the Lame’s Theorem, this results the complexity of above

algorithm as O(log b) (this is actually based on number of division) assuming a > b.

Matrix Multiplication

In this section just the algorithm and its complexity is presented for the matrix
multiplication problem.
Algorithm:
Input(s): two matrices A and B, where A ism X p and B is p X n.
Output: the matrix C = AB such that C is m X n.
matmul(A,B){
for(i = 0; i<m; i++)
for(j = 0; j<n; j++){
Cli]ljl = 0;
for(k = 0; k<p; k++)
Clil[jl = C[il[j] + A[i][k]B[k][j];

H
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Analysis:
The above algorithms clearly gives its complexity as O(mnp). For simplicity lets take
matrices A and B is of size q X q then (m = n = p) = q so, complexity of an above

algorithm is O(q3 ).

Self Study

Read Chapter 2 all from the book (you may omit the section [2.5 from (4™ edition) or 2.6

(5™ edition)] but it will be good to see it also since it covers something about

cryptography).
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Mathematical Reasoning

Any of the mathematical statement must be supported by arguments that make it correct.
For this we need to know different techniques and rules that can be applied in the
mathematical statements such that we can prove the correctness of the given
mathematical statement. This method of understanding the correctness by sequence of
statements forming an argument is a proof of the statement. A theorem is a mathematical
statement that can be shown to be true. Well founded proof is the steps of mathematical
statements that present an argument that makes the theorem true. By proving some
mathematical problem we mean that we solve that problem. For this purpose valid steps
are required such that as mentioned above those steps aid on solving the problems.
Problem solving or proving is not just a science so there is no hard and fast rule that is
applied in problem solving. However there are some guiding methods that help us to
solve different kinds of problems. Here still we must note that the problem solving is not

just a science, so hard work and art is needed.

Rules of Inference

To draw conclusion from the given premise we must be able to apply some well defined
steps that helps reaching the conclusion. These steps of reaching the conclusion are

provided by the rules of inference. Here some of the rules of inferences are given below:

Rule 1: Modus Ponens (or Law of Detachment)
Whenever two propositions p and p — q are both true then we confirm that q is true. We

write this rule as

p
P9
" q

, This rule is valid rule of inference because the implication [p A (p— q)] > qisa

tautology.
Example:

Ram is hard working and if Ram is hard working, then he is intelligent. By modus ponens
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(verify!!!), this logically infers Ram is intelligent.

Rule 2: Hypothetical Syllogism (Transitive Rule)
Whenever two propositions p— q and q — r are both true then we confirm that
implication p — q is true. We write this rule as

P49

u, This rule is valid rule of inference because the implication [(p— q) A (q— 1)]
LpoT

— (p— 1) is a tautology.

This rule can be extended to larger numbers of implications as
P—4q
q —>r

r—s
P>

Example:
If today is Sunday, then today is rainy day and if today is rainy day, then it is wet today.

By transitivity rule (verify!!!), this logically infers It is wet today.

In similar fashion we can define the following rules.

Rule 3: Addition

Due to the tautology p— (p Vv q), rule is a valid rule of inference.

S.pVvqg
Rule 4: Simplification

Due to the tautology (p A q) — p, rule P24 5 g valid rule of inference.

Rule 5: Conjunction

p
q
L PAQ

Due to the tautology [(p) A (@)]— (p A q), rule is a valid rule of inference.
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Rule 6: Modes Tollens

-9
pP—q . . .
Due to the tautology [—q A (p— q)] = —p, rule is a valid rule of inference.
Sp
Rule 7: Disjunctive Syllogism
pvq

1s a valid rule of inference.

Due to the tautology [(p v q) A —p]— q, rule P

Rule 8: Constructive Dilemma

(P> A(r—ys)

Due to the tautology [(p— @) A (= s) A (p V)] = (q Vv s), rule pYr is a
LgVvs

valid rule of inference.
Rule 9: Destructive Dilemma

Due to the tautology [(p—> q) A t— s) A (—q v —s)] = (—=p v -r), rule

(P> PA(r—s)
A pv—ls

1s a valid rule of inference.
S.oapvTr

Rule 10: Resolution

pvq

Due to the tautology [(p v @) A (—p Vv 1)]—> (q V 1), rule - " is a valid rule of
gV

inference.

Valid Arguments

An argument is called valid if all hypotheses are true and the conclusion is also true. We
can conclude that the implication (p; A p2 A ... A pn) — q is tautology. If all the
propositions in the valid argument are true then the conclusion is true.

Sometime valid argument can lead to incorrect conclusion if one or more of the false
premises are used in the argument. For e.g. If CDCSIT is at Kirtipur, then Lagankhel is at
Kirtipur. CDCSIT is at Kirtipur. Consequently, Lagankhel is at Kirtipur.
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The above argument is a valid argument using the rule modus ponens. However the
conclusion of the argument is false since the proposition at the hypothesis “Lagankhel is

at Kirtipur” is false that means conclusion may be false here.

Example 1: Construct an argument using rules of inference to show that the hypotheses
“If it does not rain or if it is not foggy, then the sailing race will be held and the life
saving demonstration will go on,” *“ If the sailing race is held, then the trophy will be
awarded,” and “The trophy was not awarded” imply the conclusion * It rained”.

Solution:

Let p = “It rains”, q = “It is foggy”, r = “the sailing race is held”, s = “Life saving
demonstration is done”, and t = *“ Trophy is awarded”.

Then we have to show that the argument

[((((pv—q) = (T AS)A@T—1t)A-t] = pis valid.

[1] c—>1) [Hypothesis]
[2] —t [Hypothesis]
[3] —r [Modus Tollens using steps 1 and 2]

[4] (-pv—q) = (rAs)) [Hypothesis]
[5] =(—pv—q) Vv (rAs) [Implication of Step 4]

[6] pAqQ@ V(rAs) [De Morgan’s Law in Step 5]
[7] pv(@rAs) [Simplification using step 6]
[8] pvr [Simplification using step 7]

Here our original premises changes to (p vr) A—r [from step 8 and 3]

9] rvp [Commutative law in step 8]
[10]—r v p [Addition using step 3]

[11]pvp [Resolution using steps 9 and 10]
[12]p [I[dempotent law]

Hence argument is valid. With conclusion “It rained”.
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Example 2: For the set of premises “If I play hockey, then I am sore the next day.” “I use
the whirlpool if I am sore.” “ I did not use the whirlpool”. What relevant conclusion can
be drawn? Explain the rules of inference used to draw the conclusion.

Solution:

Let p = “I play hockey”, q = “ I am sore”, r = “I use the whirlpool”

Then the above premises are

a) p—>q

b) gq—r

c) —r

Using hypothetical syllogism in premises a and b we have p— ri.e. “if I play hockey, then
I use whirlpool”

Using the modus tollens in premise ¢ and inferred proposition p— r we conclude —p is

true i.e. p is false. p is false means “ I did not play hockey”.

Fallacies

The fallacies are arguments that are convincing but not correct. So fallacies produce
faulty inferences. So fallacies are contingencies rather than tautologies. Here we talk
different fallacies that we may encounter.

Fallacy of affirming the conclusion (consequence)

q
—4q

This kind of fallacy has the form P ie. p A (p—q) — q. This is not a tautology

hence it is a fallacy.

Example:

If economy of Nepal is poor, then the education system in Nepal will be poor. The
education system in Nepal is poor. Therefore, Economy of Nepal is poor.

In this argument above the conclusion can be false even if both the propositions “If
economy of Nepal is poor, then the education system in Nepal will be poor” and “The

education system in Nepal is poor” are true. Denoting with symbols we may write (p—q)
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for first proposition and then the second proposition becomes q. this takes the form q A
(p—q) — q, which is not a tautology. Since the education system may not depend on the

economy of the country.

Fallacy of denying the hypothesis
—p

This kind of fallacy has the form r=4q i.e. 7p A (p—q) — —q. This is not a tautology

S.1q

hence it is a fallacy.

Example:

If today is Sunday, then it rains today. Today is not Sunday. Therefore, it does not rain
today. This argument is not true since even if today is not Sunday and it is raining today

then the first premise is true and second premise is also true but not the conclusion.

The non sequitur fallacy

Non sequitur mean “does not follow”. Generally all logical errors are the cases of non

sequitur fallacy. For e.g. _p’ if p is true and q is false then what happens?
- q

Example:
I am a teacher therefore Ram is a doctor. (how is this valid? No, it is not i.e. if Ram is not

a doctor then what?).

Begging the Question (Circular Reasoning)

If the statement that is used for proof is equivalent to the statement that is being proved
then it is called circular reasoning.

Example:

The square root of 2 is irrational since it is not rational.

Man is mortal because man dies.

Ram is black because he is black.
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Rules of Inference for Quantified Statements

There is a need of other rules to prove assertions that contain open propositions and
quantifiers. Some of the rules are:

Universal Instantiation

If the proposition of the form VxP(x) is supposed to be true then the universal quantifier
can be dropped out to get P(c) is true for arbitrary c in the universe of discourse. This can
be written as

VxP(x)
= P(c), forall ¢

Example:
In universe of discourse of all man every man is mortal implies ram is mortal where ram

1S a man.

Universal Generalization
If all the instances of ¢ makes P(c) true, then VXP(x) is true. This can be written as

P(c), for all ¢

VP () , Here the chosen ¢ must be arbitrary, not a specific element from the
s VxP(x

universe of discourse. This rule is seldom explicitly used.

Existential Instantiation
If the proposition of the form JxP(x) is supposed to be true then the there is an element ¢
in the universe of discourse such that P(c) is true. This can be written as

dxP(x)
.. P(c), for some c

, Here the element c is not arbitrary, it must be specific such that P(x)

is true. We generally find difficulty in finding such c.

Existential Generalization
If at least a element ¢ from the universe of discourse makes P(c) true, then IxP(x) is true.

P(c), for some c
< AxP(x)

This can be written as
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Inference with quantified statements

Example 1:

Explain which rules of inference are used for the argument “Linda, a student in the class,
owns a red convertible. Everyone who owns a red convertible has gotten at least one
speeding ticket. Therefore, someone in this class has gotten a speeding ticket.”

Solution:

Let S(x) denotes x is a student in a class, R(x) denotes x owns red convertible and T(x,y)
denotes x has gotten y numbers of speeding tickets. Where x is a set of people, Then
S(Linda) , R(Linda), Vx(R(x) — 3yT(x,y)) are the premises and Ix(S(x) AT(x,1)) is the
conclusion.

R(Linda) — 3JyT(Linda,y) is true using universal instantiation. Since R(Linda) is true
using modes ponens JyT(Linda,y) is true. The number 1 is the least number of tickets
that can be there. So using existential instantiation T(Linda,1). Since both S(Linda) and
T(Linda,1) are true by using conjunction S(Linda) A T(Linda,1). Hence By using

existential generalization 3x(S(x) AT(x,1)) is true.

Example 2:

Prove or disprove the validity of the argument “ every living thing is a plant or an
animal”, “Hari’s dog is alive and it is not a plant”, “All animals have heart”, Hence
“Hari’s dog has a heart”.

Solution:

Let P(x) be x is a plant, A(x) be x is an animal, L.(x) be x is alive, H(x) be x has heart and

d be Hari’s dog.

[1] Vx(P(x) v A(x)) [Hypothesis]

[2] L(d) A —=P(d) [Hypothesis]

[3] Vx(A(x) = H(x)) [Hypothesis]

[4] P(d) v A(d) [Universal instantiation from 1]

[5] —P(d) [from 2 Simplification]

[6] A(d) [Disjunctive Syllogism form 4 and 5]
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[7] A(d) — H(d) [Universal instantiation from 3]
[8] H(d) [modus ponens from 6 and 7]

Hence Hari’s dog has a heart, so the above argument is valid.

Proving Theorems

In this part we see Methods of Proof of an Implication. We present different methods

here but it is not true that all the methods of proof are given here.

Direct Proofs

We prove the implication p — q, where we start assuming that the hypothesis i.e. p is true
and using information already available (rules of inferences, theorems, etc.), if q becomes
true, then the argument becomes valid. This is direct proof.

Example:

If a and b are odd integers, then a + b is an even integer.

Proof:

We know the fact that if a number is even then we can represent it as 2k, where k is an
integer and if the number is odd then it can be written as 21 + 1, where | is an integer.
Assume that a =2k + 1 and b = 21 + 1, for some integers k and m. thena +b =2k + 1 +

21+1=2(kk+1+ 1), here (k+1+ 1) is an integer. Hence a + b is even integer.

Indirect Proofs

We have p - q = =-q — —p i.e. contrapositive of implication is equivalent to the
implication. This is the base for indirect proof. We prove the implication p — q by
assuming that the conclusion is false and using the known facts we show that the
hypothesis is also false.

Example:

If the product of two integers a and b is even, then either a is even or b is even.

Proof:

Suppose both a and b are odd, then we have a=2k + 1 and b =21 + 1.
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So ab =2k +1)(21 + 1) = 4kl +2k +21 +1 =22kl + k + 1) + 1, i.e. ab is an odd number.

Hence both a and b being odd implies ab is also odd. This is indirect proof.

Trivial and Vacuous Proofs

If it is possible to show that q is correct regardless of truth value of p then we can say that
implication p — q is true. This is trivial proof. If we can show that p is false then the
implication p — q is true. This is vacuous proof.

Example:

If x is an integer, then 3 is an odd integer. (Trivial)

If a black is white, then pink is blue. (Vacuous)

Proofs by Contradiction

The steps in proof of implication p — q by contradiction are:

Assume p A —q is true.

Try to so that the above assumption is false

When the assumption is found to be false then implication p — q is true since p — q is
equivalent to —p v q and negation of —p v q is p A —q (By De Morgan’s Law), so if our
assumption is false then its negation is true.

Alternately,

Contradict the statement and show that this leads to the false conclusion; if this is true
then the contradicted statement must be false (since —p — F is true only if —p is false),
hence the statement is true.

Example:

If a® is an even number, then a is an even number.

Proof:

Assume that a” is an even number and a is an odd number. Since a is an odd number we
have a =2k + 1, for some integer k. so a” = (2k + 1)* = 4k* + 4k + 1 = 2(k*+ k) + 1, here
K + k is some integer, say 1, then a’=2l+ 1 i.e. a’is an odd number This contradicts our

assumption that is a* even. Hence the proof.
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Proof by Cases

The implication of the form (p; v p2 Vv ... v pn) — ¢ can be prove by using the tautology
(pivp2V...vp) =g [pi=2PAP2—=Q A ... A(pn— )], 1.6. we can show every
implication (p; — q) true fori=I1, 2, ..., n.

Example:

If Ix] > 3, then x> > 9, where x is a real number.

Proof:

Here we have to consider two cases -x >3 and x > 3 since Ixl, is an absolute value of x, is

x when x > 0 and —x when x <0. If —x > 3, then x>0, Similarly, if x > 3, then x>>9.

Proof of Equivalence

We can prove the equivalence i.e. p <> q by showing p — q and q — p both.

Example:

Prove that if n is a positive integer, then n is even if and only if 7n + 4 is even.

Proof:

Assume n is even then we have an integer k such that n = 2k, so 7n + 4 = 7*2k +4 =2(7k
+2) here 7k + 4 is an integer so that 7n + 4 = 21, where | =7k + 2 i.e. 7n + 4 is even. By
direct proof it is proved that if n is even, then 7n + 4 is even.

Assume n is odd then we have an integer m such that n =2m + 1, then 7n + 4 = 14m +7
+ 4 =2(7m + 5) +1lhere since 7m + 5 is an integer 7n + 4 is an odd number by indirect
proof it is proved that if 7n + 4 is even, then n is even.

Hence the proof.

Existence Proofs

A proof of a proposition of the form IxP(x) is called an existence proof. There are
different ways of proving a theorem of this type. Sometime some element a is found to
show P(a) to be true, this is called constructive existence proof. In other method we do
not provide a such that P(a) is true but prove that 3xP(x) is true in different way, this is

called nonconstructive existence proof.
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Example: Constructive

Prove that there are 100 consecutive positive integers that are not perfect squares.

Proof:

Lets consider 2500 this is a perfect square of 50, and take 2601 this is a perfect square of
51. in between 2601 and 2500 there are 100 consecutive positive integers. Hence the
proof.

Example: Nonconstructive

Prove that there is a rational number x and an irrational number y such that x’ is
irrational.

Proof:

Lets take x =2 and y = V2 then 2" is either rational or irrational. If it is irrational we are

2\/2

done, if it is not irrational then it is rational. So take x = and y = \2/4 then we have

(ZVZ)W4 =2 =2 (irrational). Hence there is a rational number x and irrational number

y such that x” is irrational.

Uniqueness Proofs

To prove the theorem that asserts the existence of unique element with particular property
we must show that the element with this property exists and no other elements has this
property. There are two parts in this uniqueness proof

Existence: here we show that the element with desire property exists

Uniqueness: we show that if y # x, then y does not have the desired property.

The above two steps can be proved if we prove the statement

Ix(P(x) AVYy(y # x = 7P(y))).

Example:

Show that if a, b, and c are real numbers and a # 0, then there is a unique solution of the
equation ax + b =c.

Proof:

From the equation ax + b = ¢ we get the solution as x = (¢ — b)/a (since a # 0, it is
possible). This solution is unique because there is no other value for x than (c — b)/a (a

real number).
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Proofs By Counter Examples

To prove that the statement of the form VxP(x) is false, we just need some value of x. So
while proving for falsity we just look for counter example.

Example:

Prove or disprove the product of two irrational numbers is irrational.

Proof:

Here we instantly try to get the product of the irrational to try it. Lets take both the
number for product be V2 then we have V2#V2 = 2 (not rational). Hence by counter
example it is shown that the product of two irrational numbers is not necessarily

irrational.

Proof Strategies

As mentioned before finding proof is not just a science but an art too, there are no exact
rules and strategies for proving the statement. Few strategies that will be very helpful in

proving the statement are presented here.
Forward and Backward Reasoning

Remember the proof strategy utilized by direct proof method. In this method we prove
the implication p — q starting from p and using known theorems and axioms we come
out with q. This type of reasoning is called forward reasoning. Sometimes it is difficult to
prove in above way, particularly when the conclusion is complex one. To prove such
statements we find p with the help of property that p — q. this is called backward
reasoning or find some property such that q is true, then show that we can come up to the
property using p working from the property itself.

Example: Backward Reasoning

For integer a, b, ¢, d and positive integer n, prove that if a =b (modn), and ¢ = d (modn),
then a + c=b + d (modn).

Proof:

We can prove a + ¢ =b + d (modn) if we can show that (a + ¢) — (b + d) = n.k , for some

integer k (recall definition of congruence modulo).but (a +c) —(b+d) =(a-b) + (c - d).
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We know a — b = n.l, and ¢ —d =n.m, for some integers 1 and m (see hypothesis). So we
can see that (a + ¢) — (b + d) = n.l + n.m = n(l + m). Here 1 +m is also an integer, say k,
then we have (a + c¢) — (b + d) = n.k. we have shown that for some integer k, (a + ¢) — (b +

d) =n.k, hence a+ c=b + d (modn).

Using Proof by Cases

When there is no clear way to begin proof but you can sense that the information from
different cases moves forward to the proof, you generally use proof by cases (see above

on the section proofs by cases for example).

Techniques from Existing Proofs

It is generally very easy to prove if existing proofs results or ideas from those proofs are

applied. You will see a lot of use of this strategy through out the course.

Using Counter Examples

Given a conjecture if you think it is to be wrong then you can just give the example that

defy the statement given.

Mathematical Induction

In mathematics there are two ways of arriving at result deductive and inductive. In
deductive reasoning based upon the assumption that some statements are premises and
axioms, we deduce the other statements on the basis of valid inference. In the inductive
reasoning through the experiments and observations we come up with the conjecture for a
general rule and try to verify truth of the conjecture. One of the important reasoning that

considers positive integers is mathematical induction.
Principle of Mathematical Induction

Let P(n) be a statement that may be true or false for all positive integers n. To prove P(n)

is true for all n = 1 we can prove the following steps.
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P(1) is true.

For all k > 1, P(k) implies P(k+1).

Generalizing the above proof method instead of 1 take ny such that the ny is the basis for
induction then we have the steps to be proved are:

Basis Step: Show P(ny) is true.

Inductive Hypothesis: Assume P(k) is true for k = n.

Inductive Step: Show that the P(k+1) is true on the basis of Inductive Hypothesis.
Expressing in terms of rule of inference, this proof technique can be written as

[P(ng) A Vk(P(k) = P(k+1))] = VnP(n).

Example 1:
Prove that 2 —2.7 42.7% -... +2(-7)" = (1 — (-7)™")/4 whenever n is a nonnegative integer.
Proof:
Let P(n) be 22 (-7 =1-(=7)"")/4, then
i=0

Basis Step: 2.(—7)0 =2 and

(1= D" =1+7)/4 =2,

so P(0) is true.

Inductive Hypothesis: Assume that P(n) is true.

n+l

Inductive Step: if P(n+1) is true then prove is done. So P(n+1) is 22(—7)i =

i=0
22 (=7)" +2.(=7)"" so Using the assumption from the induction hypothesis we have
i=0
P(n+1) = (1 - (-7)"")/4 + 2(-7)™!
= (1= (7)™ +8¢-7)""/4
=(1+7(-7)""/4
=(1- (7"

Hence, P(n) is true for all nonnegative integers.
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Example 2:
Prove that 1.1! + 2.2! + ... + n.n! = (n+1)! —1, whenever n is a positive integer.
Proof:
Let P(n)=1.1!+2.2!'+ ... + n.n! = (n+1)! -1, then
Basis Step: for n =1, we have P(1) = 1.1! = 1, Similarly P(1) = (1+1)! -1 =2-1 =1
Hence P(1) is true.
Inductive Hypothesis: Assume that P(n) is true, i.e. 1.1! + 2.2! + ... + n.n! = (n+1)! 1.
Inductive Step: if we are able to prove that P(n+1) is true then we are done. So we have
P(n+1)= 1.1!+ 22! + ... + n.n! + (n+1)(n+1)!
= (n+1)! =1 + (n+1)(n+1)! (using induction hypothesis)
=(m+Dn! + (n+D)(n+1)! =1 = (n+1)(n! + (n+1)!) -1
= (n+1)(n! (1+ (n+1)) -1 = (n+1)n! (n+2) -1
=(n+2)!-1
P(n+1) is true

Hence P(n) is true for all positive integers.

Strong Induction (Second Principle of Mathematical Induction)

This method uses different inductive step than the first principle. Here we assume that
P(k) is true for k = ng, ng+ 1, ...., k and show that P(k+1) is true based on the assumption.
The steps in this method are:

Basis Step: Show P(ny) is true.

Inductive Hypothesis (Strong): Assume P(k) is true for all np <k <n.

Inductive Step: Show based on the assumption that P(k+1) is true.

Example 1:

Prove that 3 divides n’ + 2n whenever n is a nonnegative integer.

Proof:

Let P(n) = n’ + 2n, then

Basis Step: For n = 0, we have n’+2n= 0, this is divisible by 3 hence the statement is

true for n = 0.
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Inductive Hypothesis: assume that the P(k) = k® + 2k is divisible by 3 for all
nonnegative values for k <n.
Inductive Step: here we are going to show that p(k+1) true. We have
Pk+1) = (k+1)’ + 2(k+1) = K’ +3 K>+ 3k + 1 + 2k + 2

=k +2k+ 3K +3k+3

=31+ 3k*+ 3k + 3 (since k’ + 2k is divisible by 3)

=31+K+k+1)
Since both 1 and k are positive integers (I + K*+ k + 1) is also positive integer. Hence,
P(k+1) is divisible by 3.

So by mathematical induction n’ + 2n is divisible by three for all nonnegative integers n.

Example 2:

Use mathematical induction to show that 1/(2n) < [1.3.5....2n -1)]/(2.4....2n)
whenever n is a positive integer.

Proof:

Let P(n) be 1/(2n) <[1.3.5.....2n -1)]/(2.4.....2n)

Basis Step: for n =1, we have 1/2n=1=[1.3.5.....2n -1)]/(2.4.....2n), Since 1 < 1, P(1)
is true.

Inductive Hypothesis: Assume that P(k) is true for all positive k < n.

Inductive Step: Now to prove P(k+1) is true we have to show

1/2(k+1)) < [1.3.5.....2k -1)(2k + 1)]/(2.4.....2k.2(k+1)) so we have,

1/2k) . 2k + D/2(k + 1)) < [1.3.5....2k -D(2k + 1)]/(2.4.....2k.2(k+1))

[Above relation is true from inductive hypothesis]

1/(2k).(2k + 1)/(2(k + 1))

=2k + D)/(2k).1/2(k + 1))

=1+ 1/2n)1/2k + 1))

=1/2(k + 1)) + 1/2(k + 1))(2n)

Here we have,

1/2(k+1)) < 1/2(k + 1)) + 1/2(k + 1))(2n)

<[1.3.5....2k-1)2k + 1)]/(2.4.....2k.2(k+1)), hence proved.
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Well Ordering Property

This property states, “Every nonempty set of nonnegative integers has a least element.”
Using this property we can verify the validity of proofs using mathematical induction.
Using mathematical induction we prove P(1) is true and P(n) — P(n+1) is true for all
positive integers n. If the proof by mathematical induction is not valid then P(n) is true
for all positive integers n would be false. Let the set of positive integers for which P(n) is
false be T. then T is nonempty since there is at least one element in T such that P(n) is
false. By the well ordering property, T has a least element, let the least element be k. we
know that m cannot be 1 because we have already proved that P(1) is true. So k is a
positive integer greater than 1 so k —1 is a positive integer, so we have P(k-1) must be
true. Here k —1 is less than k i.e. k-1 is not in the set T. Since the implication P(k-1) —
P(k) is also true, P(k) must be true. This contradicts the choice of k. Hence, P(n) must be
true for all positive integers n.

Remember!!! You may prove wrongly if you do not take care

Prove a" = 1 for all nonnegative integers n, whenever a is a nonzero real number.

Proof:

Basis Step: for n = 0, a” = 1 by the definition of a°.

Inductive Hypothesis: assume that a“ = 1 for all nonnegative integers k < n.

Inductive Step: we have a**' = a*. a*/a"' = 1.1/1 =1.

Hence proved.

Attention:

Whenever k + 1 = 1 the above proof fails because here k = 0 so that a**' = a*. a*/a""' =
a’. a’ / a' = 2. Here we cannot get the value for denominator from previously obtained
value. So choosing base n = 0 does not produce correct result for n = 1 but mathematical
induction says that P(0) — P(1) which is not true here. Similarly choosing base n =1

disprove the statement at basis step.
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Recursive Definition

The process of defining the object in terms of itself is called recursion. Such a way of
representation is given by recursive definition. For e.g. natural numbers can be defined in

terms of itself as N, = N,.; +1, for No=0andn=0, 1, 2, ....

Recursively Defined Functions, Sets and Structures

When we try to define a function recursively, where the domain of the function is set on
nonnegative integers, we define such a function through two steps:

Basis Step: Specify the value of the function at base (base is generally O or 1). This is
generally well known value of the function at the lowest value of integer.

Recursive Step: Specify the rule for finding the value of a function by using the value of
a function already found i.e. at first base case is used and next result obtained from
function definition that uses base case, and so on.

This kind of definition is also called inductive definition.

Similarly if you want to define sets or structures then the similar two steps above is used.
You may also put exclusion rule in recursive step such that the elements of the sets are
specified.

Example 1:

Give a recursive definition of a sequence {a,},n=1, 2, ...,nifa, = 10"

Solution:

Basis Step: a; = 10" = 10.

Recursive Step: a, = 10a,.;. This is the recursive definition required.

Example 2:

Give a recursive definition of the set of even positive integers.

Solution:

Let E be the set of even positive integers.

Basis Step: 2 € E

Recursive Step: If a€ E, thena+ 2 € E.

The above recursive definition gives a set of even positive integers.
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Note: To prove that the recursive definition is correct we can use mathematical induction
principle.
Example 4:
Show that flz + f22 + ...+ fm2 = fufa+1,Whenever n is a positive integer. Here fi’s are it
fibonacci numbers (see book for more details on fibonacci numbers).
Proof:
Let P(n) be fi” + £5° + ... + £, = fufpur.
Basis Step: P(1) = f;” = 17 = 1.1 = f,f,. So P(1) is true.
Inductive Hypothesis: Assume that P(k) is true for all positive integers k < n.
Inductive Step: We have
Pk+D) =2+ 67+ ... + fii?
= fifisr + it
= i (fi + fir)
= fir1fie. [fk + fke1= fiao, this is fibonacci numbers property]
Hence P(k+1) is true.

So by mathematical induction P(n) is true for all positives integers n.

Theorem 1(LLame’s Theorem): Let a and b be positive integers with a > b then number
of divisions used by the Euclidean algorithm to find gcd(a,b) is less than or equal to five
times the number of decimal digits in b.

Proof:

Euclidean algorithm for finding gcd(a, b) with a > b gives the following sequence of

equations.
ro =T11q) + I2. 0<m<r;. [Here ryp = a and r; = b]
I1 =12Q2 + I3. 0<r3<m.
I'n.g =TInp-1qn-1 + In. 0<r,<ryi.
T'p-1 = Inn-

Downloaded from CSIT Tutor



Chapter — Mathematical Reasoning ' Discrete Structures

The gcd(a, b) = 1, and n divisions are used for finding it. All the quotients q;, for i =1,
2,...n all at least 1. We have q, = 2, since r, < 1p.1. S0 we have

n=1=1f.

I =21, 226 =1;.

I'n_22 Tp1 +1In > f3 + f2 = f4.

n2r3+14 2100+ =",

b=ri2rnp+r; 21, +f,1 =fu.
From the above relations we can conclude that if n divisions are used by the Euclidean
algorithm to find gcd(a, b) with a > b then b > f,,;. We have f,;; > ¢“‘1 for n > 2, where ¢
=(1+V5)2 (prove using mathematical induction). So we have b > (l)“'l.
Now taking log on both sides, logjob > (n-1)log;od but since log;o¢d = 0.208 > 1/5, we
have logjob > (n-1)/5 i.e. (n-1) < 5 logjob. If we know that the b has m decimal digits,
then we have b < 10™ and log;ob < m. Here (n-1) < 5m, and since m is an integer, n <

Sm. This is the proof.

Structural Induction

While proving the recursively defined sets we use a form of mathematical induction
called structural induction. This method consists two parts.

Basis Step: Show that the result holds for all elements specified in the basis step of the
recursive definition to be in the set.

Recursive Step: Show that if the statement is true for each of the elements used to
construct new elements in the recursive step of the definition, the result holds for these

new elements.

Validity of Structural Induction
The validity of structural induction can be seen as the validity of the mathematical
induction. If P(n) denotes the statement that is recursively defined, for all positive

integers n. The basis step of the structural induction method correspondence to the basis
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step of the mathematical induction method. We can see that the recursive step in the
structural induction tells if P(k) is true it implies P(k+1), where P(k) is assumed already
and the P(k+1) is derived in terms of P(k). Hence it follows the proofs by mathematical

induction.

Example:

Recursive definition of the set of leaves and the set of internal vertices of a full binary
tree can be defined as:

Basis Step: The root r is a leaf of the full binary tree with exactly one vertex r. This tree
has no internal vertices.

Recursive Step: The set of leaves of the tree T = T,.T, is the union of the set of the
leaves of T; and the set of leaves of T,. The internal vertices of T are the root r of T and

the union of the set of internal vertices of T and the set of internal vertices of T»,.

Use structural induction to show that 1(T), the number of leaves of a full binary tree T, is
1 more than i(T), the number of internal vertices of T.
Proof:
Basis Step: Root r of a full binary tree has only one vertex and that is leaf of the tree. So
I(T) = 1 and i(T) = 0, hence clearly T contains number of leaves 1 greater than number of
internal vertices i.e. 1(T) - i(T) = 1.
Recursive Step: Assume that T and T are trees holding the property
1(T;) —i(Ty) = 1 and 1(T,) — i(T,) = 1. To complete the proof we must show that I(T) —i(T)
=1, where T = T1.T,. We know that I(T) = I(T;) + 1(T5) [form the recursive definition]
and i(T) = 1 +1i(Ty) + i(T,) [from the recursive definition]. So,
I(T)-1T)  =1T)+LT2) - 1-i(T)) - i(T2).

=L(Ty) -1(T) + [(T2) - i(T2) — 1.

=1+ 1 -1 [from assumption above] = 1

Hence the proof.
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Recursive Algorithms

An algorithm is recursive it solves the problem by reducing the size of the same problem
using smaller input size. In this section few recursive algorithms are presented.
Example 1:

Give the recursive algorithm for finding the sum of the first n positive integers.
Solution:

Input: A positive integer n.

Output: the sum of positive integers form 1 up to n.

Positivelnteger nsum(Positivelnteger n)

{

if(n = =1) then return 1;

else return nsum(n-1) + n;

/

Example 2:

Devise a recursive algorithm for finding x"modm whenever n, x, and, m are positive
integers based on the fact that x"'modm = (x"'modm.xmodm) modm.
Solution:

Input: Three positive integers n, x, and m.

Output: n™ x modulo m.

Positivelnteger nmod(n, x, m)

{

if n = = I then return xmodm;,

else return ((nmod(n-1, x, m).xmodm)modm.

/

Note: Try to understand difference between use of recursion and iteration

Self Studies

Read chapter 1 and 3 of your textbook such that you can cover all the read materials in

the class.
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Elementary Combinatorics

Combinatorics is the study of arrangements or possible combination of objects. We come
up with different situations where we need to identify the number of elements having
similar features, number of steps required to solve the problem, amount of storage

required, etc.
Basics of Counting

There are two basic counting principles that can be used to solve the counting problems.

We define those two principles below:
Sum rule: The principle of disjunctive counting.

If the first task can be done in m ways and the second task can be done in n ways and if
both the tasks cannot be done at a time, then there are m + n ways to do one of the task.
We can generalize this rule as, if a set X is union of disjoint nonempty subsets S;, So, ...,
Sn, then IXI =1Si1+1Sal+ ... +1S,l.

Remember: the set must be disjoint, for overlapping set we use different principle called
inclusion exclusion principle (will be covered later).

Example 1:

In how many ways we can draw a heart or a diamond from an ordinary deck of playing
cards?

Solution:

There are total 13 cards of heart and 13 card of diamond. So, by sum rule total number of
ways of picking heart or diamond is 13 + 13 = 26.

Example 2:

How many ways we can get a sum of 4 or of 8 when two distinguishable dice (say one
die is red and the other is white) are rolled?

Solution:

Since dice are distinguishable outcome (1, 3) is different form (3, 1) so to get 4 as sum
we have the pairs (1, 3), (3, 1), (2, 2), so total of 3 ways. And similarly getting 8 can be
from pairs (2, 6), (6, 2), (3, 5), (5, 3), (4, 4), so total 5 ways. Hence getting sum of 4 or 8
is3+5=8.
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Product Rule: Principle of sequential counting.

If a work can be done in m ways and another work can be done after the completion of
first work in n ways, then there are m X n ways to do the task that consists both the work.

Generalizing the rule, if Sy, Sy, ..., S, are non empty sets, then the number of elements in

the Cartesian product S; X S, X ...X S,, is the product H;I S Tie. IS xSy x .. xSyl =

[T.s: 1

Example 1:

An office building contains 27 floors and has 37 offices on each floor. How many offices
are there are in the building?

Solution:

By the product rule there are 27.37 = 999 offices in the building.

Example 2:

How many different three-letter initials with none of the letters can be repeated can
people have?

Solution:

Here the first letter can be chosen in 26 ways, since the first letter is assigned we can
choose second letter in 25 ways and in the same manner we can choose third letter in 24

ways. So by product rule number of different three-letter initials are 26.25.24 = 15600.

More Examples on Basics:

Example 1:

How many strings are there of four lowercase letters that have the letter x in them?
Solution:

There are total 26.26.26.26 strings of four lowercase letters, by product rule. In the same
way we can say that there are 25.25.25.25 strings of four lowercase letters without x,
since without x there will be a set of 25 characters only. So there are total of 26.26.26.26
- 25.25.25.25 = 66351 four lowercase letter strings with x in them. This is true because
we are decrementing total numbers of strings with the number of strings that do not

contain x in them so at least one x will be in the strings.
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Example 2:

How many functions are there from the set {1, 2, ..., n}, where n is a positive integer, to
the set {0, 1}.

Solution:

Each element from the set {1, 2, ..., n}can map the set {0, 1} in 2 ways. Since there are n
h

elements in the first set by the product rule number of possible functions are 2.2.2.....n"

term i.e. 2".

Tree Diagrams

We can use a tree diagram to solve the counting problem (don’t worry we will study tree
in detail later).

Example:

Use a tree diagram to find the number of bit strings of length four with no three
consecutive Os.

Solution:

From the above tree we can get that there are total number of 13 bit strings of length four
with no three consecutive zeroes. For this we can explain as if a bit string start with 1
then there is only one bit string that can have three consecutive Os (1000), the total
number of bit string of length starting with 1 and have no three consecutive Os is thus
2.2.2 -1 =7, similarly if the bit string start with O then there is a possibility that the next
two bits may be 0 so the possible bit strings of length four with consecutive Os starting
with 0 are 0001 and 0000, so the total number of bit string of length starting with 1 and
have no three consecutive Os is thus 2.2.2 -2 =6. Using the sum rule the total number of

such bit strings is 13.
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Pigeonhole principle

The pigeonhole principle states that if there are more pigeons than pigeonholes, then
there must be at least one pigeonhole with at least two pigeons. The concept of pigeons
can be extended to any objects.

Theorem 1: The pigeonhole principle

If k + 1 or more objects are placed into k boxes, then there is at least one box containing
two or more of the objects.

Proof:

We use proof by contradiction here. Suppose that k+1 or more boxes are placed into k
boxes and no boxes contain more than one object in it. If there are k boxes then there
must be k objects such that there are no two objects in a box. This contradicts our
assumption. So there is at least one box containing two or more of the objects.

Example:

Show that if there are 30 students in a class, then at least two have last names that begin
with the same letter.

Proof:

There are 30 students in the class and we have 26 letters in English alphabet that can be
used in beginning of the last name. Since there are only 26 letters and 30 students, by
pigeonhole principle at least two students have the last name that begins with the same
letter.

Theorem 2: The generalized pigeonhole principle

If N objects are placed into k boxes, then there is at least one box containing at least

[N /K| objects.

Proof:
Suppose N objects are placed into k boxes and there is no box containing more than

[N /k|-1 objects. So the total number of objects is at most
k( |_N / k—|—1) < k((N/k + 1) —=1) = N. This is the contradiction that N objects are placed

into k boxes (since we showed that there are total number of objects less than N). Hence,

the proof.
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Example:

If a class has 24 students, what is the maximum number of possible grading that must be
done to ensure that there at least two students with the same grade.

Solution:

There are total 24 students and the class and at least two students must have same grade.

If the number of possible grades is k then by pigeonhole principle we have !—24/ k_| =2.

Here the largest value that k can have is 23 since 24 = 23.1 + 1. So the maximum number

of possible grading to ensure that at least two of the students have same grading is 23.

Applications: Pigeonhole principles

Example 1:

How many numbers must be selected from the set {1, 3,5, 7,9, 11, 13, 15} to guarantee
that at least one pair of these numbers add up to 16?

Solution:

The pairs of numbers that sum 16 are (1,15), (3, 13), (5, 11), (7, 9) i.e. 4 pairs of numbers
are there that add to 16. If we select 5 numbers then by pigeonhole principle there are at

least |_5/4—‘ = 2 numbers, that are from the set of selected 5 numbers, that constitute a

pair. Hence 5 numbers must be selected.

Example 2:

Find the least number of cables required to connect eight computers to four printers to
guarantee that four computers can directly access four different printers. Justify your
answer.

Solution:

If we connect first 4 computers directly to each of the 4 printers and the other 4
computers are connected to all the printers, then the number of connection required is 4 +
4.4 = 20. To verify that 20 is the least number of cables required we have if there may be
less than 20 cables then we would have 19 cables, then some printers would be connected

by at most |_19/ 4J = 4 cables to the computers. Then the other 3 printers would have to

connect the other 4 computers here all the computers cannot simultaneously access
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different printer. So if we use 20 cables, then at least !—20/ 4—| = 5 cables connects a

printer to a computer directly. So the remaining 3 printers are required to connect only 3
computers. Hence the least number of cables required is 20.

Example 3:

Among n + 1 different integral powers of an integer a, there are at least two of them that

have same remainder when divided by the positive integer n.

Proof:
Let al, a2, ey an+1, be n+1 different integral powers of integer a. when these numbers are
divided by n then the set of possible remainders is {0, 1, 2, ..., n-1). Since there are n

remainders and n+1 numbers by pigeonhole principle at least 2 of the reminders must be

same.

Self Studies

Read chapter 4.1 and 4.2 of your textbook such that you can cover all the read materials

in the class.
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Recurrence Relations

Some counting problems cannot be solved using the methods we have learnt before. One
of the ways of solving counting problems is by finding relationships, called recurrence
relation, between the terms of a sequence. When we represent some problem using
recursive definition then we specify some initial condition and the recursive condition.
We use such definition to solve the relation called recurrence relation.

A recurrence relation for the sequence {a,} is an equation that expresses a, in terms of
one or more of the previous terms of the sequence, namely, ay, aj, ..., a,.1, for all integers
n with n = ng, where ng is a nonnegative integer. A sequence is called a solution of a
recurrence relation if its term satisfies the recurrence relation.

Example:

Let {a,} be a sequence that satisfies the recurrence relation a, = a, + 1 forn=1, 2, ...,
and suppose that a; = 1. What is the sequence?

Solution:

Wehavea;=1,a,=a;+1=1+1=2..... In similar way we have the set {1, 2, ....}.
Example:

For a, = -2a,.1, ag = -1 find a;, a,, ... as.

Solution:

We have ag =- -1

a;=-2ay=-2.-1=2.

a=-2a,=-2.2=-4.

a3 =-2a, =-2.-4 = 8.

a=-2a3=-2.8=-16.

as = -2a4 =-2.-16 = 32.

Example:

Is the sequence {a,} a solution of the recurrence relation a, = -3a,.; + 4a, if a) a, = 0?
and b) a, = 2n?

Solution:

ap = -3a,.; + 4a,,, for a, = 0 we have a) a, = 0 so the sequence {a,} is a solution. b) a, = -

3.2(n-1) + 4.2(n-2) =6n — 6 + 8n — 16 =14n — 22 # 2n, so it is not a solution.
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Example:

Find the recurrence relation satisfied by the sequence a, = n!, and a, = 2n + 3 (There may
be more than one relation for some sequence).

Solution:

Take ap = 1 and a, = a,.;.n (this is the relation for a, = n!)

Take a; = 5 and a, = a,.; + 2 (this is the relation for a, = 2n + 3, verify!!)

Example:

Find a recurrence relation for the number of bit strings of length n with an even numbers
of Os.

Solution:

Let a, denotes the number of bit strings of length n with even numbers of Os. There is 1
bit string of length one that is valid since among two bits we can choose only 1.
Recursively we can define this in terms of bit strings of length n —1. Here we have two
conditions for getting bit strings of length n-1 with even numbers of Os. First, if the bit
strings end with 1, then we can have valid bit stings of length n — 1 ending with 1 so that
there are a,.; numbers with even numbers of Os. Second, if the bit strings end with 0, then
we can make a bit string valid if we add the bit strings of length n-1 that have odd
numbers of 0s. Since there are 2™ possible ways of getting bit strings of length n-1 and
ap-1 1s the number of valid bit strings of length n-1 we have P a,.1 humbers of invalid
bit strings of length n-1. So, the total numbers of valid bit strings is ag.; + 2" - a,; = 2"
Hence we have the relation a, = 2“"1(This is not recursive but method used was recursive).

So since we have a; = 1, we can write a, = 2a,.;.

Solving Recurrences

We encounter different types of recurrence relations. There is no specific technique to
solve all the recurrence relation. However, we solve recurrence relation with some
particular forms by using the systematic methods. In this section we are going to see few

of them.
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Solving Linear Homogeneous Recurrence Relations with Constant

Coefficients

A linear homogeneous recurrence relation of degree k with constant coefficients is a
recurrence relation of the form a, = cja,. + Crap2 + ... + Cxank, Where ¢y, ¢, ..., Cx are
real numbers, and ¢k # 0. The above relation is linear since right hand side is a sum of the
multiples of previous terms of the sequence. It is homogeneous since no term occurs
without being multiple if some a;s. All the coefficients of the terms are constants and
degree k is due to the representation of a, in terms of previous k terms of the sequence.

In solving the recurrence relation of the type above, the approach is to look for the
solution of the form a, = r", where r is a constant. a, = 1" is a solution of a recurrence

2

relation a, = C1a,.1 + Coana + ... + Cxani if and only if 1" = ¢;r™" + cor™ + ... + ™. when

we divide both sides by " and transpose the right hand side we have

k2

k k-1 . . . . .
r -cir  -cor ... - cx = 0. Here we can say a, =" is a solution if and only if r is the

solution if the equation TR SO

. - ¢x = 0 (characteristic equation of the
recurrence relation) and solutions to this equations are called characteristic roots of the

recurrence relation.

Theorem 1: (without proof)
Let c; and c; be real numbers. Suppose that - cir - ¢o = 0 has two distinct roots r; and r».
Then the sequence {a,} is a solution of the recurrence relation a, = cja,.; + cra, if and

only if a, = oyr;" + oLr," forn =0, 1, 2, ..., where o and o, are constants.

Example:

Solve the recurrence relation a, = a,.; + 6a,, forn=>2,a9=3,a; =6.

Solution:

Characteristic equation of the given relation is r*-r-6=0.Its roots are r = 3 and r = -2
since (r - 3)(r + 2) = 0. Hence, the sequence {a,} is a solution to the recurrence relation if
and only if a, = 03" + 0p(-2)", for some constants o; and o,. From the initial conditions
we have ap =3 = o1+ 0, a; = 6 = 304+ (-2)0. Solving these two equations we have o =

12/5 and o = 3/5. Hence, the solution is the sequence {a,} with a, = (12.3" + 3(-2)")/5.
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Theorem 2: (without proof)
Let c¢; and c; be real numbers with c, # 0 . Suppose that - cir - ¢ = 0 has only one root
ro. Then the sequence {a,} is a solution of the recurrence relation a, = cja, ; + ca,; if and

only if a, = oyro" + onrg” forn =0, 1, 2, ..., where o and o, are constants.

Example:

Solve the recurrence relation a, = 2a,.; - a,» forn=>2,a9=3, a; = 6.

Solution:

Characteristic equation of the given relation is r* - 2r + 1 = 0. Its only root are r = 1.
Hence, the sequence {a,} is a solution to the recurrence relation if and only if a, = o 1" +
opnl1”, for some constants o; and o,. From the initial conditions we have ap =3 = o, a; =
6 = o + 0. Solving these two equations we have a; = 3 and o, = 3. Hence, the solution

is the sequence {a,} with a, = 3(1" + n1").

Theorem 3: (without proof)

Let ¢y, ¢y, ..., ¢k be real numbers. Suppose that ™ - clrk'1 - ... - ¢x = 0 has k distinct roots
r], I, ..., Ix. Then the sequence {a,} is a solution of the recurrence relation a, = cja,.; +
Codno + ... + Ckayy if and only if a, = oyry" + oory” + ... + our” forn=0, 1, 2, ..., where
o4, O, ..., O are constants.

Example:

Solve the recurrence relation a, = 2a,.; + a,» - 2a,3forn>3,ap=3,a; =6 and a, = 9.
Solution:

Characteristic equation of the given relation is -2 -r+2=0.Itsroots arer = 1, r = -1,
and r = 2. Hence, the sequence {a,} is a solution to the recurrence relation if and only if
a, = o 1"+ o(-1)" + 032", for some constants o, O, and 0. From the initial conditions
wehave ap=3 =0y + 0p + 03,2 =6 =) - O + 2003, and a, =9 = o} + O + 40i3. Solving
these two equations we have a; = 3/2, o, = -1/2, and o3 = 2. Hence, the solution is the

sequence {a,} with a, = (3/2)1" - (1/2)(-1)" + 2.2".
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Theorem 4: (without proof)
Let ¢y, ¢y, ..., cx be real numbers. Suppose that - clrk'1 - ... - ¢k = 0 has t distinct roots
Iy, 12, ..., Iy with multiplicity m;, my, ..., m;, respectively, so that m; > 1 fori=1,2, ..., t
and m; + m; + ...+ m; = k. Then the sequence {a,} is a solution of the recurrence relation
ap = Cjay.| + Coann + ... + cxank if and only if
an = (061,0 +0,n+... + OCl,ml_lnml_l) I‘1][1

+ (0(2,0 +0n+...+ Otz,mz.lnmz_l) rzn
mt—l)

+ oo+ (0o + O N+ ...+ O™ ) T

forn=0, 1, 2, ..., where o4 are constants for ] <i<tand 0 <j<m;-1.

Example:

Solve the recurrence relation a, = 5a,.; - 7a,, + 3a,3forn=>3,a,=1,a; =9 and a, = 15.
Solution:

Characteristic equation of the given relation is r° - 5r* + 7r - 3 = 0. Its roots are r = 1, r =
3,andr=1.1.e.r;=1,m; =2 and r, =3, my = 1 Hence, the sequence {a,} is a solution
to the recurrence relation if and only if a, = (oo + oy n) 1" + (0po) 3", for some
constants 0 o, 0 1, and 0 0. From the initial conditions we have ag =5 =010 + O, a; =
9=+ 0y + 300, and ay = 15 = a1 o + 2011 + 90, 0. Solving these two equations we
have o 0= 3/2, o1 =9, and o3 = -1/2. Hence, the solution is the sequence {a,} with a, =

3/2)1" +9nl" - (1/2)3".

Solving Linear Nonhomogeneous Recurrence Relations with Constant

Coefficients

The recurrence relation of the form a, = cja,.; + ca,s + ... + ckank + F(n), where ¢y, ¢,
..., ¢k are real numbers and F(n) is a function depending upon n. The recurrence relation
preceding F(n) is called associated homogeneous recurrence relation. For example a, =
7a,.; + 3a,, +6n is a linear nonhomogeneous recurrence relation with constant

coefficients.
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Theorem 5: (without proof)
If {a,”’} is a particular solution of the nonhomogeneous linear recurrence relation with
constant coefficients a, = cja,.; + Cann + ... + ckank + F(n), then every solution of the

()

h . . .
form {an(p) + a,™ }, where a, "’ is a solution of the associated homogeneous recurrence

relation a, = Cja,.1 + C2an2 + ... + Cxank.

Example:

Find all the solutions of the recurrence relation a, = 4a,.; + n. Also find the solution of
the relation with initial condition a; = 1.

Solution:

We have associated linear homogeneous recurrence relation as a, = 4a,_;. The root is 4, so

the solutions are an(h)

= 04", where o is a constant. Since F(n) = n” is a polynomial of
degree 2, a trial solution is a quadratic function in n, say, p, = an® + bn + ¢, where a, b,
and c¢ are constants. To determine whether there are any solution of this form, suppose
that p, = an” + bn + ¢ is such solution. Then the equation a, = 4a,.; + n? becomes
an’+bn+c = 4(21(n—1)2 +b(n-1)+c¢c)+ n’.

=4an® —-8an + 4a + 4bn — 4b + 4c + n’

=da+ l)n2 + (-8a + 4b)n +(4a — 4b + 4¢)
Here an” + bn + c is the solution if and onlyif4da+1=aie.a=-1/3;-8a+4b=bie. b=
-8/3; 4a —4b + 4c = c i.e. ¢ = -28/3. So a,” = -(n® + 8n + 28)/3 is a particular solution
and all solutions are a, = {a,™ + a, ™V} = -(n” + 8n + 28)/3 + 04",where o is a constant.

For solution with a, = 1, we have a, =1 =-(1 + 8 + 28)/3 + 04 i.e. oo = 10/3. Then the

solution is a, = (10.4" - n? - 8n - 28)/3.

Theorem 6: (without proof)

Suppose that {an} satisfies the linear nonhomogeneous recurrence relation a, = cjap | +
Cofna + ... + Crank + F(n), where ¢y, Ca, ..., ¢ are real numbers and F(n) = (bn'+ beyn"™! +
...+ bin+by)s", where by, by, ..., b and s are real numbers.

When s is not a root of the characteristic equation of the associated linear homogeneous

recurrence relation, there is a particular solution of the form
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(pn'+ pun™ + ... + pin+ po)s”.
When s is a root of the characteristic equation and its multiplicity is m, there is a
particular solution of the form

m t t-1 n
n (pn+pen + ... +pin+po)s .

Example:

Find the solution of the recurrence relation a, = 2a,.; + n.2".

Solution:

We have the associated linear homogeneous recurrence relation is a, = 2a,;. The
characteristic equation for this would be r-2 = 0, so the root is 2 and hence the solutions
are 2, = 02", where a is a constant. We have F(n) = n.2". (Of the form n.s") where s is

the root of the characteristic equation and the multiplicity of 2 is 1 so, the particular

solution has the form n.(p;n)2" = p;n2". The solution is, a, = 02" + p;n”2".

Recurrences Applications

One of the application areas of recurrence relations is analysis of divide and conquer
algorithms.

Divide and Conquer Algorithms

Divide and conquer algorithms divide a problem of larger size to the problem of smaller
size so continually such that the problem of the smallest size that has trivial solution is
obtained. If f(n) represents the number of operations required to solve the problem of size
n, then follows the recurrence relation f(n) = af(n/b) + g(n), called divide and conquer
recurrence relation. In the relation above the problem of size n is partitioned into a parts
of the problem of the size n/b and g(n) is the operations required to conquer the solutions.
In this section no algorithms are presented but their recurrence relations are tried to
achieve.

Example 1:Fibonacci Numbers

We know that the fibonacci numbers are generated by the formula f,, = f,,.; + f,.,. Here n®

Fibonacci number is the sum of (n—l)th and (n—2)nd fibonacci numbers. Here for the initial
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conditions are fo = 0, and f; = 1. Use of the above relation does not exactly produce the
recurrence relation mentioned above, however this is an example of divide and conquer

algorithm since each time the problem is changed into two problems of smaller size.

Example 2: Merge Sort

In merge sorting the input sequence of n items is broken down into 2 halves (here there
may be difference in 1 item between two parts). Since the list of size n need more
comparisons than list of size n/2, the problem here is simplified. This process continues
until all the comparisons are trivial. This problem satisfies the divide and conquer
recurrence relation

M(n) =2M(n/2) + O(1).

Theorem 7: (without proof)
Let f be an increasing function that satisfies the recurrence relation f(n) = af(n/b) + ¢
whenever n is divisible by b, where a > 1, b is an integer greater than 1, and c is a positive

om"" ) if a>1,
O(logn) if a=1.

real number. Then f (n)is{ . Furthermore, when n = bk, where k is a

positive integer, f(n) = Cyn'%," + C,, where C; = f(1) + c¢/(a-1) and C, = -c/(a-1).

Example:

Solve the recurrence relations f(n) = 2f(n/2) + 4 and g(n) = g(n/2) + 2 to get their upper
bound.

Solution:

Using theorem 7 above we have f(n) = O(n) since, log,* = log,> = 1. Similarly we have

g(n) = O(logn).

Theorem 7: Master Theorem (without proof)
Let f be an increasing function that satisfies the recurrence relation f(n) = af(n/b) + cn
whenever n = bk, where k is a positive integer, a > 1, b is an integer greater than 1, c is a

positive real number, and d is nonnegative real number. Then
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on*) if a<b’,
f(n)is{ 0" logn) if a=b",
o™y if a>b’.

Example:
Solve using Master Theorem the following recurrences where each n is by 2.
) f(n) = 2f(n/2) + n’.
ii)y  f(n) =2f(n/2) +n.
iii)  f(n) = 7f(n/2) + n’.
Solution:
Using master theorem we have
) f(n) = O(n%), since (a)2 < 2*(b")
ii)  f(n) = O(nlogn), since (a)2 = 2(b")
i) f(n) = O™, since (a)7 > 2%(b%)

Inclusion and Exclusion and Applications

In the counting problems where the sets are not disjoint we extensively use inclusion
exclusion principle. Given set A and set B the union of A and B is given by the formula
IA U BI=IAl + IBl - IA "N BI.

Example 1:

There are 345 students at a college who have taken a course in calculus, 212 who have
taken a course in discrete mathematics, and 188 who have taken course in both calculus
and discrete mathematics. How many students have taken the course in either calculus or
discrete mathematics?

Solution:

Here we have ICl = 345 (students taking the calculus course), IDI = 212 (students taking
the discrete mathematics course), and IC N DI = 188 (students taking both discrete
mathematics and calculus courses). Number of students taking either discrete

mathematics or calculus, |IC U DI =IClI+ IDI-IC " DI =345 + 212 — 188 =369.
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Theorem 8: The Principle of Inclusion — Exclusion

Let Ay, As, ..., A, be finite sets. Then | A U Ay U ... UA, |
= DIA =D IANA T+ DIANANA - +ED" A NA N NA, L

1<i<n 1<i<j<n 1<i< j<k<n
Proof:

We try to prove this theorem using counting technique. Suppose that the element a is a
member of exactly r of the sets Aj, Ay, ..., Ay, where 1 < r < n. Then this element is
counted C(r, 1) times in XIAjl. The element a is counted C(r, 2) times in 2IA; N Ajl. So if
there are m sets C(r, m) times a is counted from the summation that contains m of the sets
of A;. Using these counts in the right hand side of the formula above we get
Cr,)-Cr,2)+C(x,3)-... + (—1)”1C(r, r) counts for the common element (i.e. a here)
We know that

Cr,0-Cr, H)+C(1,2)-... + -1)C(r,r) =0.

So,

-C(r,0)+C(r, )-Cr,2) - ... + -D™'Cr, 1) =0

Cr,0)=Cr, 1)-C,2)-...+(-D*'Cr,n=1 [since C(r, 0) = 1]

From this fact we know that each element from the all sets are counted just once. Hence
the proof.

Example:

How many elements are in the union of four sets if each of the set has 100 elements, each
pair of the set shares 50 elements, each three of the sets share 25 elements, and there are 5
elements in all four sets?

Solution:

Let the four sets be A, B, C, and D. then we have IAl = IBl = ICI = DI = 100, IA N Bl = 1A
NCl=IANDI=IBNCI=IBNDI=ICnDI =50, ANnBNCI=IANnBNDI =I1AN
CNnDI = BN CnNDI=25and IANB N Cn DI=35. Principle of inclusion exclusion
shows that
AuUBUCUDI=IAI+IBI+ICI+IDI-IANBI-IANCI-IANnDI-IBNCl-IBnNDI-
ICNADI+IANBNCI+IANnBNDI +IANCnNDI+BNCNDI-IANnBNCnNDI
=100 + 100 + 100 + 100 =50 =50 —50 =50 =50 -50 + 25 +25 + +25 +25 -5 = 195.
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Alternative form of Inclusion — Exclusion

Let A; be the subset containing the elements that have property pi. The number of
elements with all the properties P;j, Pi, ..., Py will be denoted by N(P;; Pi> ... Pix). In set
notation we can write these quantities as

lAit N Aip N ...n Al = N(Pj; P ... Pyg).

If the number of elements with none of the properties is denoted by N(P’; P’, ... P’;)) and
the number of elements in the set is denoted by N. we have

NP’ P, ... P ) =N-1A; U Ay U ...u Ayl Using inclusion exclusion principle, we have

NP P,...P)=N= Y NP)+ Y NBP)~ Y NPBPP)+..+)"NEBP ).

I<i<n Ii<j<n I<i< j<k<n
Example:
Find the number of solutions of the equation x; + x, + x3 = 13, where x;, X, and x3 are
nonnegative integer less than 6.
Solution:
Let properties P; be x; = 6, P, be x, = 6 and P, be x3 = 6 then the number of solutions of
the equation x; + X, + X3 = 13, where X, X, and x3 are nonnegative integer less than 6 is

N(P’; P’; P’3) = N — N(P}) - N(P2) - N(P3) + N(PP;) + N(P{P3) + N(P,P3) - N(P;P,P;3)

Now, the equation can be viewed as selecting 13 items where there are x; items of type
one, X, items of type two, and x3 items of type three. Here we can use the same numbers
as much as we can from a set with three numbers (repetition is allowed) so we have,
C(3+ 131, 13) =C(15,13) = 15!/(2!13!) = 15.14/2 = 105 solutions i.e. N = 105.
Similarly, N(P;) = N(P,) =N(P3)=C@3 +7-1,7) = C(9,7) = 36. [Here for x; = 6 we can
select 6 items of the particular type and remaining 7 items are selected to have 13 items
from other types.]. Number of solutions with x; =2 6 and x, 2 6 is C3 + 1 -1,1) = 3,
number of solutions with x; = 6 and x3 > 6 is C(3 + 1 —1,1) = 3, number of solutions with
Xy 26 and x3261is C(3 + 1 -1,1) = 3, and number of solutions with x; = 6, X, = 6 and X3

> 6 is 0. so using above formula we have N(P’; P’, P’3) =105 -3.36 + 3.3 -0 =6.

Downloaded from CSIT Tutor



Chapter — Advance Counting ' Discrete Structures

Applications

Example 1:(Sieve of Eratosthenes)

Find the number of primes less than 200 using the principle of inclusion exclusion.
Solution:

We know that the composite number not exceeding 200 has prime factor not exceeding
V200 = 14.14 i.e. not exceeding 14. Primes less than 14 are 2, 3, 5, 7, 11, and 13. Now we
can say that the above 6 primes and all other numbers greater than 1 not exceeding 200
and not divisible by above 6 primes are primes. So if we take properties, P; that a number
is divisible by 2, P, that a number is divisible by 3, P; that a number is divisible by 5, P4
that a number is divisible by 7, Ps that a number is divisible by 11, and P that a number
is divisible by 13, then prime numbers not exceeding 200 is 6 + N(P’; P’, P’3 P’4 P’5 P’).
We know that there are 199 integers not exceeding 200 and greater than 1 we have by
principle of inclusion exclusion

NP’ P, P3P’y P’5sP’g) =

199 — N(P;) — N(P2) — N(P3) — N(P4) — N(Ps) — N(Ps) + N(PPy) + N(P,P3) + N(P,P,) +
N(PiPs) + N(PiP¢) + N(P2P3) + N(P2P4) + N(P2Ps) + N(P2Pg) + N(P3P4) + N(P3Ps) +
N(P3P¢) + N(P4Ps) + N(P4Ps) + N(PsPs) - N(P1P2P3) - N(P1P,P4) - N(PP2Ps) - N(P1P2P¢)
- N(P{P3P4) - N(P{P3Ps) - N(PP3Ps) - N(P;P4Ps) - N(P{P4Ps) - N(P;PsP¢) - N(P,P3Py) -
N(P,P3Ps) - N(P,P3Ps) - N(P,P4Ps) - N(P2P4Pg) - N(P,PsPs) - N(P3P4Ps) - N(P3P4Pg) -
N(P3PsPg) - N(P34PsPs) + N(PP.P3;P4) + N(PP,P3Ps) + N(PP,P3Ps) + N(PP,P4Ps) +
N(PP,P4P¢) + N(PP,PsP¢) + N(PP3P4Ps) + N(P,P3P4P¢) + N(P,P3P5P¢) + N(PP4PsP¢) +
N(P,P3P4Ps) + N(P2P3P4Ps) + N(P2P3P5Ps) + N(P2P4P5Ps) + N(P3P4PsPs) - N(PP,P3P4P5)
- N(P1P,P3P4P¢) - N(P{P,P3PsP¢) - N(P{P,P4PsP¢s) - N(P{P3P4PsP¢) - N(P,P3P4PsP¢) +
N(PP,P3P4P5 P¢)

200 200 200 200 200 200 200 200 200
=199 - - - - - - + | — |+ ||+ |+
ST A B S
200 200 200 200 200 200 200 200 200 200
+ + + + + + + + + +
{2.11J {2.13J {3.5J [3.7J {3.11J {3.13J {5.7J [5.11J [S.BJ [7.11J

200 || 200 | | 200 | | 200 || 200 || 200 || 200 || 200 || 200 |
7.13) L1113] [235] [23.7]) [23.11]) [23.13] [257] [2511] [25.13
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200 || 200 || 200 || 200 || 200 || 200 || 200 || 200 |
1 2.7.11 2.7.13 2.11.13 3.5.7 3.5.11 3.5.13 3.7.11 3.7.13
200 i 200 i 200 i 200 i 200 N 200 N 200 N
| 3.11.13 5.7.11 5.7.13 5.11.13 7.11.13 2.3.5.7 2.3.5.11
200J{200J{200J{200J{200J{200J
+ + + + + +
1 2.3.5.13 2.3.7.11 2.3.7.13 2.3.11.13 2.5.7.11 2.5.7.13
200 200 200 200 200 200
— |+ | —| + + + | — |+ | — |+
| 2.5.11.13 2.7.11.13 3.5.7.11 3.5.7.13 3.5.11.13 3.7.11.13
200 ) 200 ) 200 ) 200 ) 200 ) 200 )
15.7.11.13 2.3.5.7.11 2.3.5.7.13 2.3.5.11.13 2.3.7.11.13 2.5.7.11.13

200 N 200
13.5.7.11.13 2.3.5.7.11.13

=199 -(100+66 +40 +28 + 18+ 15+ (33 +20+14+9+7+13+9+6+5+5+3
+3+2+2+1)-(6+4+3+2+2+1+1+1+14+0+1+1+14+0+0+0+0+0+
0 + 0) + all others will be 0.
=199 — 267 +132 — 24 = 40.

Now the total number of primes not exceeding 200 is 6 + 40 = 46.

Example 2:(The Number of Onto Functions)

How many onto functions are there from a set with seven elements to one with five
elements?

Solution:

Suppose that the elements in codomain be a;, i =1 ...5. Let P;, i =1...5 be the properties
that a;’s for i = 1, 2, ..., 5 are not in the range of the functions, respectively. To have a
number of onto function if we can exclude the functions holding the above properties we

are done. So, using principle of inclusion exclusion we have,

N(P"\P"2P" 3P’ P’5)=N - Y N(B)+ SN(BP)~ Y N(BPE)+ S N(EPPR)-NEEPER).

I<i<n I<i<j<n ISi<j<k<n I<i<j<k<l<n
In the formula above,

. 7
N, total number of functions = 5".

We can select any one element of codomain to be not in the range then selecting this

Downloaded from CSIT Tutor



Chapter — Advance Counting ' Discrete Structures

element can be done in C(5,1) ways. There are 4 elements left in the codomain after not
taking one element for function then for each such a removal of elements from range we
can make 4’ numbers of total functions. So total number of functions with one element

missing from the range is Y N(B) = C(5,1) 4.

1<i<n
We can select any two elements of codomain to be not in the range then selecting this
element can be done in C(5,2) ways. There are 3 elements left in the codomain after not
taking two elements for function then for each such a removal of elements from range we
can make 3’ numbers of total functions. So total number of functions with one element

missing from the range is ZN(EP_I.) = C(5,2) 3.

1<i<j<n
Using similar reason as above,

Y.N(PP,P) =C(53)2".

I<i<j<k<n

> N(PP,PP)=C54) 1"

I<i< j<k<i<n
N(PP,RF,F)=0.

Then we have total number of onto functions as 5’ - C(5,1) 4’ + C(5,2) 37 - C(5,3) 2" +
C(5.4) 17 =0 ="78125 — 81920 + 21870 — 1280 + 5 = 16800.

Example 3:(Derangements)

The permutations of n elements that leave no objects in their original position are called
derangements.

How many derangements are there of a set with four elements?

Solution:

Let a permutation have property P; if it fixes an element i. Then we can say that the
number of derangements is the number of permutations having none of the properties P;
for 1 = 1, 2, 3, 4. Then we can write N(P’1P’,P’3P’4), using principle of inclusion

exclusion, equals to N - Y N(P)+ Y N(PP)— > N(PPR)+N(EBEF)., where

1<i<n I<i<j<n I<i<j<ksn

N is the total number of permutations i.e. 4! = 24. If one element is fixed some where in
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C(4,1) place then total number of such permutations would be ZN(B) = C4,1)3!=24.

1<i<n
If two elements are fixed some where in C(4,2) places then the total number of such

permutations would be > N(PP,)= C(4,2) 2! = 12.

I<i<j<n

Similarly, Y N(PP,P,) =C(4,3)1!=4and

1<i< j<k<n
N(RBPP) = C(4,4)0! =1. Hence total number of derangements is

24-24+12-4+1=09.

Self Studies

Read chapter 6 of your textbook such that you can cover all the read materials in the

class.
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Representing Relations

Listings of ordered pairs (read yourself)

Matrix Representation

The relation with finite sets can be represented using the matrix (zero one matrix). Let A
be a set (a;, aj, ...a,) and B be the set (by, by, ..., by,), where elements are listed in some
arbitrary order we represent relation from A to B by matrix Mg = [my], where

lif (a,,b,) € R.
"7 0if (a;,b,) e R.

Example:
Represent the relation {(1,1), (1,2), (1,3), (2,2), (2,3), (3,2), (3,3)} on the set {1,2,3) with

matrix, where elements of the set is listed in increasing order.

Solution:
1 11
M,=|0 11
011

Identifying properties

Reflexive: If all the diagonal elements are 1 i.e. all m; = 1 whenever i = j, then the
relation represented by the matrix is reflexive (is above matrix reflexive? Yes).
Symmetric: If m;; = 1 in the matrix then m; = 1 must be true and if m;; = 0 then mj; =0 is
also true. (it means that the relation represented by a matrix is symmetric if and only if
the matrix is equal to its transpose). (What about above matrix? No).

Antisymmetric: If m;; = 1 and i #j, then m;; = 0 or, in other words, either m;; = 0 or m;; =

0 when i #j. (What about above matrix? No).

Note: Read composition of relations
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Directed Graph Representation

A directed graph, or digraph is a set of vertices V together with the set of edges. The
vertex a is called initial vertex of the edge (a, b), and the vertex b is called the terminal
vertex of this edge.

Example:

Draw the directed graph for the relation given in above example (example in matrix
representation relation is {(1,1), (1,2), (1,3), (2,2), (2,3), (3,2), (3,3)}).

Solution:

Identifying properties

Reflexive: If every vertex has edge from the vertex to itself.

. e

Symmetric: If for every edge of one direction there is another edge in opposite direction

joining same two vertices as of first edge.

| a—

Antisymmetric: If no two distinct vertices have an edge going in both directions.

3 »
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Closures of Relations

Let R be a relation on a set A. R may or may not have some property P, like symmetry,
reflexivity, etc. If there is a relation S with property P containing R such that S is a subset
of every relation with property P containing R, then S is called the closure of R with
respect to P.

Reflexive closure

For any relation R on A, reflexive closure of R is formed by adding to R all pairs of the
form (a, a) with a € A, not already in R i.e. R U D, where D = {(a, a) | a € A} is the
diagonal relation on A.

Example:

Let R be the relation on the set {1, 2, 3, 4} containing the ordered pairs (1,2), (1,3), (2,2),
(2,4),(3,1),(3,2), (3,4), and (4, 4) find reflexive closure.

Solution:

We have R = {(1,2), (1,3), (2,2), (2, 4), (3,1), (3,2), (3,4), (4,4)} and

D ={(L,1), (2,2), 3,3), (4.4)}

So, R U D = {(1,1), (1,2), (1,3), (2,2), (2, 4), (3,1), (3,2), (3,3), (3, 4), (4, 4)} is the

reflexive closure of R.

Symmetric closure

If all ordered pairs of the form (b, a) is added to the relation R on A, where (a, b) is in the
relation, that are not already in R, then the newly formed set after addition is symmetric
closure of R i.e. for the relation R on A R U R is symmetric closure of relation R, where
R' ={(b,a)l(a,b)e A}.

Example:

Find symmetric closure for the relation given in above example.

Solution:

We have R = {(1,2), (1,3), (2,2), (2, 4), (3,1), (3,2), (3,4), (4,4)} and

R ={(@2.1), 3.1), (42). (1.3), (2.3), (4.3)}

So, RUR™ ={(1,2), (1,3), (2,1), (2,2), (2,3), (2,4), (3,1), (3,2), (3,4), (4,2), (4,3), (4,4)}

is the symmetric closure of R.
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Transitive closure

A Path from a to b in the directed graph G is a sequence of edges (Xo, X1), (X1, X2),
... (Xn-1, Xpn), In G, where n is a nonnegative integer, and Xy =a and X, = b. In other words
a sequence of edges where the terminal vertex of one edge is same as the initial vertex in
next edge in the path. This path is denoted by xo, Xy, ..., X, and has length n. A path of
length n > 1 that begins and ends at the same vertex is called a circuit or cycle.

Let R be a relation n a set A. The connectivity relation R* consists of the pairs

(a,b) such that there is a path of at least one from a to b in R. In notation we write

R*=OR".
n=l

Theorem 1: (Prove yourself)

The transitive closure of a relation R equals the connectivity relation R*.

Theorem 2:

Let Mg be the zero-one matrix of the relation R on a set with n elements. Then the zero-
one matrix of the transitive closure R* is

Mgs = Mg v Mg?' v MRP v v Mg!™,

Suggestion: Try to read an algorithm using the above theorem.

Warshall’s algorithm
Given a set S with n elements vy, vy, ..., v, where elements are listed in arbitrary order
and R is a relation on a set S. If a, xy, X2, ..., Xm.1, b 1S a path, then xi, X, ..., X1 are

called interior vertices of the given path. More clearly, all the vertices of a path that
appears somewhere but not as a first or last vertices in a path are interior vertices (If first
vertex is met again in the path then it can be interior vertex, similarly if the last vertex has
been met already then it can be interior vertex). Warshall’s algorithm uses the concept of
interior vertices of a path.

Lemma 1:

Let Wy = [Wij[k]] be the zero one matrix that has a 1 in its (i, j)™ position if and only if
there is a path from v; to v; with interior vertices from the set {vi, vo, ..., vi}. Then

[k-1]

- k-1 .. .. .
Wil = Wi v wj A wij[ ]), whenever 1, j, and k are positive integers not

exceeding n.
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Algorithm:
Warsahll(W: n by n 0-1 matrix )

{
for(k =0;k<n;k++)
for(i =0;i<n;i++)
for(j =0;j<n;j++)
Wi = wij V( Wik A W)
/W = [wy] is the result
/

What is the complexity of above algorithm?

Equivalence Relations

Equivalence Relations

Discrete Structures

A relation R on set A is called equivalence relation if it satisfies the three properties

namely, reflexive, symmetric, and transitive. The two elements related by equivalence

relations are called equivalent.

Equivalence Classes

Given R, an equivalence relation on set A, the set of all elements that are related to an

element a of A is called the equivalence class of a. The equivalence class of a with

respect to R is denoted by [a]g or [a] when only one relation is in consideration. In

notational term we can write [a]Jg = {b | (a,b) € R}. If ¢ € [a]g, then c is called a

representative of equivalence class [a]g.

Equivalence Classes and Partitions

Given a set A, a partition of A is a collection P of disjoint subsets whose union is A i.e.

VBeP,BCA;
VB, Ce P,BNC=0,orB=C;and
V xe AdB e Psuchthat x € B;
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Theorem 1:
Let R be an equivalence relation on a set S. Then the equivalence classes of R form a
partition of S. Conversely, given a partition {A; | i € I} of the set S, there is an

equivalence relation R that has the sets Ai, i € I, as its equivalence classes.

Example:
Define the relation R on the set A of positive integers by (a,b) € R iff a/b can be
expressed in the form 2™, where m is an arbitrary integer.

a) Show that R is an equivalence relation.

b) Determine the equivalence classes under R.
Solution:
a)
For all ae A, a/a=1 :20, where m = 0 hence R is reflexive. If (a,b) € R then we have a/b
= 2" such that b/a =2™. So we have (b,a) € R whenever (a,b) € R hence R is symmetric.
Take (a,b) € R and (b, ¢) € R then we can write a/b = 2™ and b/c = 2" so we have a/c =
Hpmin

, where m+n is an arbitrary integer so that (a,c) € R hence R is transitive. For the

facts above we showed that R is an equivalence relation.

b)

Some equivalence classes may be
[1]1={1,248,... ... }

[3] ={3,6,12,24,48, ... ... }
[5]={5,10,20,40, ... ... }
[71={7,14,28,56, ... ... }

We can generalize these classes as

= {2™p | m is nonnegative integers and p is either 1 or prime greater than 2}.
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Partial Orderings

A relation R on a set A is called partial order or partial ordering if it is reflexive,
antisymmetric, and transitive. A set A together with the partial order R is called a
partially ordered set, or a poset, denoted by (A, R).

Example:

Show that a relation < “less than or equal” is partial order on the set of integers.

Solution:

We know Vae Z, a < a, hence < is reflexive. If a < b and b < a, then a = b, hence < is
antisymmetric, and if a < b and b < ¢, then a < c, hence < is transitive. It follows that < is

a partial ordering on the set of integers Z and (Z, <) is a poset.

In a poset (S, R), the elements a and b of a poset are comparable if either aRb or bRa.
When neither aRb nor bRa, then a and b are incomparable. If every two elements of a set
S are comparable, then S is called a totally ordered or linearly ordered set or a chain,
and R is called total order or a linear order.

(S,R) is a well ordered set if it is a poset such that R is a total order and such that every

nonempty subset of S has a least element.

Lexicographic order

Given two posets (Aj,L;) and (AL,). The lexicographic ordering L on A; X A; is
defined by specifying that one pair is less than a second pair i.e. (aj, a)L(by, by) if a;L;b;
or both a; = b; and a;L,b,. Similarly we can extend this definition to Cartesian product or
more than two sets.

Lexicographic Ordering of Strings

Suppose a;a; ... ap and bib; ... b, are strings on a partially ordered set S and suppose two
strings are not equal. If t is the minimum of m and n, then we define lexicographic
ordering that the string a;a; ... ap, is less than b;b, ... b, if and only if

(ajay ... a)) < (biby ... by, or

(ajay ... a) = (byby ... b)) and m < n.
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Example #1:

Find the lexicographic ordering of the 3 tuples (1,1,2), (1,2,1)

Solution:

(1,1,2) < (1,2,1) because first elements of both the 3 tuples are same so if we look

forward then the second element of first 3 tuple is less than the second element of second

3 tuple.

Example #2:

Find the lexicographic ordering of the strings quack, quick, quicksilver, quicksand,
quacking.

Solution:

quack < quick [ strings differ in third position and a <]

quick < quicksilver [ letter of the first string agrees but second string is longer]
quicksand < quicksilver [ strings differ in seventh position and a <]

quacking < quicksand [ strings differ in third position and a < i]

Similarly others are
quack < quacking, .....
So the ordering is

quack < quacking < quick < quicksand < quicksilver

Hasse Diagrams

A partial ordering on a finite set can be represented using the pictorial notation as
follows:

Construct the directed graph of a relation.

Remove all the loops (since it is clear that partial order is reflexive so every vertex has a
loop)

Remove all the edges that is requires due to the transitivity

Arrange each edge so that its initial vertex is below its terminal vertex and remove all
arrows from the edges since edges point in upward direction only.

The diagram formed using above steps contains sufficient information to find the partial

ordering. This diagram is called Hasse diagram.
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Example #1:

Draw the Hasse diagram for divisibility on the set {1,2,3,5,7,11,13}
Solution:

Example #2:

Draw the Hasse diagram for divisibility on the set {1,2,3,4,5,6,7,8}

Solution:

- @

Maximal and Minimal Elements

Some Definitions:

Maximal Elements: An element of a poset is maximal if it is not less than any elements
of the poset i.e. a is maximal in the poset (S,<) if there is no b € S such that a < b. In
Hasse diagram maximal elements are top elements.

Minimal Elements: An element of a poset is minimal if it is not greater than any
elements of the poset i.e. a is minimal in the poset (S,<) if there is no b € S such that b <
a. In Hasse diagram minimal elements are bottom elements.

Greatest Element: An element in a poset that is greater than every other element i.e. a is
the greatest element of the poset (S,<) if b < a for all b € S. The greatest element may

exist or may not exist in a poset.
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Least Element: An element in a poset that is less than every other element i.e. a is the
least element of the poset (S,<) if a < b for all b € S. The least element may exist or may
not exist in a poset.

Upper Bound: If u is an element of S such that a < u for all elements a € A, then u is
called an upper bound of A, where A < S.

Lower Bound: If 1is an element of S such that 1 < a for all elements a € A, then I is
called a lower bound of A, where A — S.

Least Upper Bound: |, is the least upper bound of the subset A if a <1, whenever a € A
and 1, < u whenever u is an upper bound of A.

Greatest Lower Bound: g is the greatest lower bound of the subset A if g is a lower

bound and 1 < g; whenever 1 is a lower bound of A.

Example:
Answer these questions for the poset ({3,5,9,15,24,45},)
a) Find the maximal elements
b) Find the minimal elements
c) Is there a greatest element?
d) Is there a least element?
e) Find all upper bounds of {3,5}
f) Find the least upper bound of {3,5} if exists
g) Find all lower bounds of {15,45}
h) Find the greatest lower bound of {15,45}, if exists.
Solution:
a) 24 and 45 are maximal elements.
b) 3 and 5 are minimal elements
c¢) No greatest element since there is no element in a set is divisible by all the
elements in a set.
d) No least element since no element in a set divides all the elements in a set.
e) Since 15 and 45 are divisible by both 3 and 5 and they are follow the relation we
have 15 and 45 as upper bounds of {3,5}
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f) Since among the upper bounds 15 is the least, 15 is least upper bound.
g) The elements 3, 5, and 15 divides the elements 15 and 45. Hence 3, 5, and 15 are
lower bounds

h) Amongst the lower bounds 15 is the greatest lower bound.

Lattices

A partially ordered set in which every pair of elements has both the least upper bound and
the greatest lower bound is called lattice.
Example #1:

Identify whether the poset given by following Hasse diagram is lattice or not?

Solution:
Every pair of elements for e.g. (a,b), (a,c), (a,e), (b,e) .... Has least upper bound and

greatest lower bound so the poset given by above Hasse diagram is a lattice.

Example #2:
Determine whether the poset (Z, ) is a lattice
Solution:

Suppose x and y are two integers. If we have a relation x >y for all x,y € Z, then we can
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say that x is the least upper bound and y is the greatest lower bound. Conversely y = x for
all x,y € Z, then we can say that y is the least upper bound and x is the greatest lower

bound. These conditions hold for all elements in Z, hence poset (Z, 2) is a lattice.

Topological Sorting

A total ordering < is called compatible with the partial ordering R if a <b whenever aRb.
Construction of a compatible total ordering from a partial ordering is called topological
sorting.

Lemma 2:

Every finite nonempty poset (S, <) has a minimal element.

Proof:

Take an element ag from the set S. if ag is not minimal, then there is an element a; with a;
< ap. If a; is not minimal there is an element a, with a, < a;. this process is continued until
all the elements in the set are tested for and if it goes up to nth element of the set which is

the last one from the set then it will be the minimal element.

Algorithm:
toposort(S: finite poset)
{
k=I;
while (S # @)
{
ay = a minimal element of S // from lemma 1 it is sure
S=S—{a};
k=k+I;
/
return {ay, ay, ..., a,} //compatible total ordering of S.
/
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Example:

Find a compatible total order for the divisibility relation on the set {1,2,3,6,8,12,24,36}
Solution:

From the set we can identify that 1 is the minimal element so, 1 is selected. Next,
minimal of {2,3,6,8,12,24,36} are 2 and 3, so we can choose any one element. Lets
choose 2. Similarly, minimal of {3,6,8,12,24,36} is 3 and 8, so choose 8. Again select
minimal element i.e. 3 from the set {3,6,12,24,36}. Continuing like this we have one of
the total ordering as

1<2<8<3<6<12<24<36.

Self Studies

Read chapter 7 of your textbook such that you can cover all the read materials in the

class.
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Graphs

Graph is a discrete structure with vertices and edges connecting the vertices. In this

lecture we will discuss different types of graph and their applications.
Types of Graphs
Simple Graph

We define a simple graph as 2 — tuple consists of a non empty set of vertices V and a set
of unordered pairs of distinct elements of vertices called edges. We can represent graph
as G = (V, E). This kind of graph has no loops and can be used for modeling networks
that do not have connection to themselves but have both ways connection when two
vertices are connected but no two vertices have more than one connection. The figure

below is an example of simple graph.

Multigraph

A multigraph G =(V, E) consists of a set of vertices V, a set of edges E, and a function f
from E to {{u, v}lu, ve V, u# v}. The edges e; and e, are called multiple or parallel
edges if f{e;) = f(ez). In this representation of graph also loops are not allowed. Since
simple graph has single edges every simple graph is a multigraph. The figure below is an

example of a multigraph.
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Pseudograph
A pseudograph G =(V, E) consists of a set of vertices V, a set of edges E, and a function f
from E to {{u, v}lu, ve V}. An edge is a loop if f(e) = {u, u} = {u} for some u € V. The

figure below is an example of a multigraph.

v

Directed Graph

A directed graph (V, E) consists of a set V of vertices, a set E of edges that are ordered
pairs of elements of V. The below figure is a directed graph. In this graph loop is allowed

but no two vertices van have multiple edges in same direction.

Directed Multigraph
A directed multigraph G =(V, E) consists of a set of vertices V, a set of edges E, and a
function f from E to {(u, v)lu, v € V}. The edges e; and e, are called multiple edges if

fle1) = f(e2). The figure below is an example of a directed multigraph.
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Terminologies

Two vertices u, v are adjacent vertices of a graph if {u, v} is an edge.

The edge e is called incident with the vertices u and v if e = {u, v}. This edge is also said
to connect u and v. where u and v are end points of the edge.

Degree of a vertex in an undirected graph is the number of edges incident with it, except
a loop at a vertex. Loop in a vertex counts twice to the degree. Degree of a vertex v is
denoted by deg (v).A vertex of degree zero is called isolated vertex and a vertex with
degree one is called pendant vertex.

Example: Find the degrees of the vertices in the following graph.

b
a

€

Solution:
deg(a) = deg(f) = deg(e) =2 ; deg(b) = deg(c) = 3; deg(d) =4

Theorem 1: The Handshaking Theorem
Let G = (V, E) be an undirected graph with e edges. Then 2e = Zdeg(v).

veV
Theorem 2:
An undirected graph has an even number of vertices of odd degree.
Proof:
Take two sets of vertices, Vi, a set of vertices with even degree, and V,, a set of vertices

with odd degree. In an undirected graph G =(V, E) we have
2e = deg(v)=) deg(v)+ D deg(v).
veV

veV, VeV,
From the equality above we can say the left part is even i.e. 2e is even, the sum of deg(v)
for v € V| is even since every vertices has even degree. So for the left hand to be even
sum of deg(v) for v € V, must be even. Since all the vertices in the set V, have odd

degree the number of such vertices must be even for the sum to be even. Hence proved.
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Let (u, v) be an edge representing edge of a directed graph G. u is called adjacent to v and
v is called adjacent from u. The vertex u is called initial vertex and the vertex v is called
terminal or end vertex. Loop has same initial and terminal vertex.

In directed graph the in-degree of a vertex v, denoted by deg'(v) , is the number of edges
that have v as their terminal vertex. The out-degree of a vertex v, denoted by deg’(v), is
the number of edges that have v as their initial vertex. Loop at a vertex adds up both in-
degree and out-degree to one more than calculated in-degree and out-degree.

Example:

Find the in-degree and out-degree of each vertex in the following graph.

1

Solution:
In-degrees of a graph are deg'(1) = deg'(4) = 1; deg(2) = 3; deg(3) = 2 and the out-
degrees of a graph are deg'(1) = deg"(2) =deg'(3) = 1; deg’(4) = 4.

Theorem 3:

Let G(V, E) be a graph with directed edges. Then Zdeg‘ )= Z:df:g+ (v)=IEl

A subgraph of a graph G =(V, E) is a graph H= (W, F) where Wc Vand FCE.

Example:

. b
is a subgraph of
c a b
f €
d
f €
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The union of two simple graphs G| = (Vy, E}) and G, = (V;, E,) is the simple graph with
vertex set VUV, and the edge set E;UE,. The union of G; and G, is denoted by G;UGj.

Example:

Find the union of two graphs given below.

2
2
1
4 6
~ 3 4
3

Solution:

JA SN

Complete Graphs
The complete graph of n vertices, denoted by K,, is the simple graph that contains exactly
one edge between each pair of distinct vertices.

Example:
What are Kl, K3, and K5r7

Solution:

K
K1 K3 :
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Cycles

The cycle C,, n = 3, consists of n vertices vy, vy, ..., vy, and edges {vi, v2},{va, v3}, ...,
{Vn-1, va}, and {vn, v1}.

Example:

What are Cs, Cs, and C;?

Solution:
C3 C5 C7
Wheels

The wheel W, for n > 3, is an union of C, and additional vertex where the new vertex is
connected by each vertex of the cycle.

Example:

What are Cs, Cs, and C;?

Solution:
W3 W5 W7
n- Cubes

The n-dimensional cube, or n-cube, denoted by Q,, is the graph that has vertices
representing the 2" bit strings of length n. Two vertices are adjacent if and only if the bit

strings that they represent differ in exactly one bit position.
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Example:

What are Qy, Q,, and Q3? 110 111

Solution: 10 11 100 ”
o—0 001

000 001

Qs

Q Q2

Bipartite Graphs
A simple graph G is bipartite if its vertex set V can be partitioned into two disjoint
subsets V; and V; such that every edge in the graph connects a vertex from the set V; to
the vertex of the set V,. No two vertices of the same set are connected by an edge.

A graph is bipartite if and only if it is possible to color the vertices of the graph
with at most two colors such that no two adjacent vertices have the same color.

A graph is bipartite if and only if it is not possible to start at a vertex and return to
this vertex by traversing an odd number of distinct edges.
Complete Bipartite Graphs: The complete bipartite graph Ky, is the graph where the
vertex set is partitioned into two subsets of m and n vertices, respectively. In this graph
there is an edge between two vertices if and only if two vertices are in different subsets of
vertices.
Example:
Sketch K3 5, Kj 5.

Solution:
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Graph Representations

Graph can be represented in many ways; one of the ways of representing a graph without

multiple edges is by listing its edges. Some other ways are described below:

Adjacency List
This type of representation is suitable for the undirected graphs without multiple edges,

and directed graphs. This representation looks as in the tables below.

Edge List for Simple Graph

a b
Vertex | Adjacent Vertices
a b, c
—
b a, d
c d

C a, d

d b, c

Edge List for Directed Graph

Initial Vertex End Vertices a b
a b
b c —>
c b d
c

d a,b,c,d

If we try to apply the algorithms of graph using the representation of graphs by lists of
edges, or adjacency lists it can be tedious and time taking if there are high number of
edges. For the sake of the computation, the graphs with many edges can be represented in

other ways. In this class we discuss two ways of representing graphs in form of matrix.
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Adjacency Matrix
Given a simple graph G =(V, E) with |Vl = n. assume that the vertices of the graph are
listed in some arbitrary order like vi, vo, ..., v,. The adjacency matrix A of G, with

respect to the order of the vertices is n-by-n zero-one matrix (A = [a;]) with the

1 if {v;, v;}isanedge of G,

. Since there are n vertices and we may

condition, a;; = {0 -
otherwise.

order vertices in any order there are n! possible order of the vertices. The adjacency
matrix depends on the order of the vertices, hence there are n! possible adjacency
matrices for a graph with n vertices.

Adjacency matrix for undirected graph is symmetric, in case of the pseudograph or
multigraph the representation is similar but the matrix here is not zero-one matrix rather
the (i, j)th entry of the matrix contains the number of edges appearing between that pair of
vertices.

In case of the directed graph we can extend the same concept as in undirected graph as

1 if (v,,v.)isanedge of G, o )
! . The main difference is

dictated by the relation a; = -
0 otherwise.

that the matrix may not be symmetric.
If the number of edges is few then the adjacency matrix becomes sparse. Sometimes it

will be beneficial to represented graph with adjacency list in such a condition.

Incidence Matrix

This is another way of representing graph. Given an undirected graph G = (V, E).
Assume that the vertices of the graph are vy, vy, ..., v, and the edges of the graph are e,

€, ..., em. the incidence matrix of a graph with respect to the above ordering of V and E

1 when edge e i isincident with v,,

is n-by-m matrix M = [m;;], where m;; = {O —
otherwise.

When the graph is not simple then also the graph can be represented by using incidence
matrix where multiple edges corresponds to two different columns with exactly same

entries. Loops are represented with column with only one entry.
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Example #1:
Represent the following graph using adjacency matrix and incidence matrix.

b
a €3

€1 d

€4 Ca

Solution:

Let the order of the vertices be a, b, c, d, e, f and edges order be ey, e,, €3, €4, €5, €6, €7, €3,

€o9.

o0 1.0 0 0 1] . e ey e ey e e e e & i
10111 1 b 1 0 1.0 0 0 0 0 O
01001 1 . O 1 1.0 1 0 1 1 O
010010 J 0O 0 01 1.1 0 0 O
011100 . 0O 00 00 0 0 1 1

11100 0 f 0O 0000 1 1 0 1

110 1 0 0 0 O O]
Adjacency Matrix Incidence Matrix
Example #2:

Represent the following graph using adjacency matrix and incidence matrix.

€1 €5 d
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Solution:

Let the order of the vertices be a, b, c, d, e, f and edges order be ey, e,, €3, €4, €5, €6, €7, €3,

€9, €10, €11.

- - 1 %2 %3 % %5 % %7 %% %9 S0 ‘1

11010 a 1100100000 0]

(1)2(2)(1”1) b 101 110000000
cloo1 10100001

oo d 100001111100

001 3 1

- - e 00000O0T1 11 1 1]

Adjacency Matrix Incidence Matrix

Example #3:

Represent the following directed graph using adjacency matrix.

a Qe

Solution:

Let the order of the vertices be a, b, ¢, d, e, f, g and h. The adjacency matrix is

S O O O o o —~ O
S O O O o o~ O
S O O O = O = =
S O O O O = = O
S O O = O = O O
N = O = O O O O
- o = O O O O O
S O O O NN O O O
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Graph Isomorphism

Simple graphs G = (V, E) and H = (W, F) are isomorphic if there is a bijection function f
from V to W with the property that a and b are adjacent in G if and only if f(a) and f(b)
are adjacent in H, for all a and b in V. The bijection f is called an isomorphism.

Note: Extend the same concept for other types of graphs.

Determining whether two graphs are isomorphic or not is a difficult task since we can
have n! possible one-to-one correspondence between two graphs with n vertices and
testing for adjacency preservation between vertices is still cumbersome.

We generally can determine the two graphs to be not isomorphic by finding whether the
graphs under consideration have the property needed for them to be isomorphic. Such a
properties are called invariant.

Isomorphic simple graphs have same number of vertices (one-to-one correspondence
between vertices of two graphs is required).

Isomorphic simple graphs have same number of edges (due to adjacency preservation).
Degrees of the vertices in the isomorphic graphs must be same because the number of
edges from that vertex is determined by degree.

Existence of a simple circuit of length k, where k is a positive integer greater than 2, in

both the graphs is an invariant.

The subgraphs formed by connecting the edges from the vertex with same degree in both
the graphs must be isomorphic.
Example #1:

Determine whether the given two graphs are isomorphic or not?
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Solution:

In the above two graphs number of vertices in both graphs is same (i.e. 6), number of
edges equal to 9 in both the graphs and all the vertices in both the graphs have degree 3.
Since the invariants agree in both the graphs, we can try out to find the function that is
isomorphism. Take the sequence of vertices from the first graph as 1, 2, 3, 4, 5, and 6.
Now define f(1) = c, f(2) = a here there is adjacency preservation since we have {1, 2} as
and edge in the first graph where as {f(1), f(2)} ={c, a} is an edge in the second graph.
Similarly we can assign f(3) = b, f(4) = e, f(5) = d, f(6) = f. Since we found one to one
correspondence between vertices of two graphs persevering the adjacency, the above two
graphs are isomorphic. We can note that the adjacency matrices of two isomorphic graphs
in which the vertices are ordered in terms of function i.e. in our example 1, 2, 3, 4, 5, and
6 for the first graph and c, a, b, e, d, and f in the second graph are same (verify!). [In the
above two graphs note that the number of circuits of same length in both the graphs is

same. |

Example #2:

Determine whether the given two graphs are isomorphic or not?

Solution:

In the above two graphs number of vertices in both graphs is 8, the number of edges
equal to 7 in both the graphs, in both graphs two vertices have degree 3, 4 vertices have
degree 1 and the remaining 2 vertices have degree 2. Since the invariants agree in both
the graphs, we can continue to get the function such that it is isomorphism. However, in
case of first graph the subgraph containing the vertex c (degree 3), with vertices a, b, c, d,
and e is not isomorphic with any of the subgraph formed by connecting edges with vertex

2 or 6 (both of degree 3). Hence the two above graphs are not isomorphic.
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Paths*

In an undirected graph G, a path of length n, where n is a nonnegative integer, from a to b
in G is a sequence of n edges e, €, ..., €, of G such that f(e;) = {xo, X1}, f(e2) = {x1, X2},
..., f(en) = {Xn.1, Xn}, Where a =x( and b = x,,. For the simple graph the path is denoted by
a vertex sequence Xy, Xy, ..., Xp. If a = b and the path length is greater than zero, then the
path is called circuit or cycle. The path or circuit is said to pass through the vertices xj,
X2, ..., Xp.1 O traverse the edges e, €, ..., €,. A path or circuit is simple if it does not
contain the same edge more than once.

The similar definition can be provided to define the paths in directed multigraph,

however the edges are instead ordered pairs in the directed multigraph.

Connectedness in undirected graphs*

An undirected graph is called connected if there is a path between every pair of distinct
vertices of the graph. A graph that is not connected is the union of more than one
connected graphs that do not share the common vertex. These disjoint connected

subgraphs are called connected component of a graph.

Theorem 4:

There is a simple path between every pair of distinct vertices of a connected undirected
graph.

Proof:

Suppose a and b are two distinct vertices of the connected undirected graph G =(V, E).
we know that G is connected so by definition there is at least one path between a and b .
Let xo, X1, ..., Xp, Where Xo = a and x, = b, be the vertex sequence of a path of a least
length. Now if this path of the least length is not simple then we have x; = Xx;, for some 1
and j with 0 <1 <j. This implies that there is a path from a to b of shorter length with the
vertex sequence Xg, Xi, ..., Xi, ..., Xj«l, ..., Xn obtained by removing the edges

corresponding to the vertex sequence Xi.1, ..., Xj. This shows that there is a simple path.
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Cut vertices (articulation points) are those vertices in the graph whose removal along
with the edges incident on them produces subgraph with more connected components
than in the original graph.

Cut edge (bridge) is an edge whose removal produces a graph with more connected
components than in the original graph.

[See example in the textbook]

Connectedness in directed graphs*

A directed graph is strongly connected if there is a path from a to b and from b to a
whenever a and b are vertices in the graph. A directed graph is weakly connected if there
is a path between every two vertices in the underlying undirected graph. The subgraphs
of a directed graph G that are strongly connected but not contained in larger strongly
connected subgraphs are called strongly connected components or strong components

of G.

Euler Paths and Circuits

An Euler circuit in a graph G is a simple circuit containing every edge of G. An Euler
path in G is a simple path containing every edge of G.
Example:
Find the Euler path or circuit in the following graphs
1 2

No Euler circuit exist, but the Euler path is
1,2,5,1,3,54,3,5,2,4

4 1 2 3

4 ' 6
The Euler circuit is 1,2,3,6,9,8,7,4,5,8,6,5,2.4,1 a'
7 ‘ 9
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Necessary and Sufficient Conditions for Euler Circuits and Paths
Theorem 5:

A connected multigraph has an Euler circuit if and only if each of its vertices has even
degree.

Proof:

Take a connected multigraph G =(V, E) where V and E are finite. We can prove the
theorem in two parts.

First we prove that if a connected multigraph has an Euler circuit, then all the vertices
have even degree. For this, take a vertex v, where the Euler circuit begins. There is some
edge that is incident to v and some other vertex say u then we have an edge {v, u}. This
edge {v, u} contributes one to the degree of v and u both. Again there must be some edge
other than {v,u} that is incident to u and some other vertex. In this case the total degree
of the vertex u becomes even, so whenever in the circuit the vertex is met the degree of
that vertex is even since every time entering and leaving the vertex gives even degree to
all the vertices other than the initial vertex. However since the circuit must terminate in
the vertex v and the edge that is terminating the circuit contributes one to the degree of
the initial vertex v the total degree of the vertex v is also even. Now we have every time
the vertex is entered and left it gives even degree and the initial vertex also gives even
degree, we can conclude that if a graph has Euler circuit, then all the vertices have even
degree.

Now we try to prove that if all the vertices in the connected multigraph have even degree,
the there exist Euler circuit. For this, take a connected multigraph G with all the vertices
having even degree. To make a circuit start at arbitrary vertex, say a of G. now start from
the vertex a = xo and arbitrarily choose other vertex x; to form and edge {Xo, X;}.
Continue building the simple path {xo, X1}, {X1, X2}, ..., {Xn-1, Xn}. This path terminates
since it has a finite number of edges. It begins at a with an edge {a, x} and terminate at a
with some edge {y, a}. This is correct since every vertex has even degree in the graph we
are considering, if an edge left some vertex then there must be an edge entering that
vertex to make its degree even. Now we have shown that there exists simple circuit in the

graph with all the vertices of even degree. If this circuit has all the edges of the graph in
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it, then the simple circuit is itself an Euler circuit. If all the edges are not in the circuit,
then we have next possibility. Now, consider the subgraph, say H that is formed by
removing all the edges that are already in the simple circuit formed above and by
removing the isolated vertices after edges are removed. Since the original graph G is
connected, there must be at least one vertex of H that is common with the circuit we have
formed. Let w be such a vertex. Every vertex in H has even degree since it is a subgraph
of original graph. In case of w, while forming the circuit pairs of incident edges are used
up. So the degree of w is again even. Beginning at w we can build a simple circuit as
described above. We can continue this process until all edges have been used. Now if we
combine the formed circuit in a way that it makes use of common vertex to make a circuit
then we can say that the circuit is an Euler circuit. Hence if every vertices of a connected
graph has an even degree then it has an Euler circuit.

This concludes the proof.

Theorem 6:

A connected multigraph has an Euler path but not Euler circuit if and only if it has
exactly two vertices of odd degree.

Proof:

This fact can be proved if we can prove that first, if the connected multigraph has Euler
path exactly two vertices have odd degree and second if the connected multigraph has
exactly two vertices of odd degree, then it has Euler path.

Now, if the graph (in this proof graph means connected multigraph) has an Euler path say
from a to z but not Euler circuit, then it must pass through every edge exactly once. In
this scenario the first edge in the path contributes one to the degree of vertex a, and at all
other time when other edges pass through vertex a it contributes twice to the degree of a,
hence we can say that degree of a is odd. Similarly the last edge in the path coming to z
contributes one to the degree of z, all the other edges contributes two one for entering and
one for leaving. Here also the degree of last vertex, z is odd. All the other vertices other
than a and z must have even degree since the edges in those vertices enter and leave the

vertex contributing two to the degree every time the vertices are met. Hence if there is an
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Euler path but not an Euler circuit, exactly two vertices of the graph have odd degree.
Secondly, if exactly two vertices of a graph have odd degree and lets consider they are a
and z. Now, consider another graph that adds an edge {a, z} to the original graph, then
the newly formed graph will have every vertices of even degree. So there exists Euler
circuit in the new graph and the removal of the new edge gives us the Euler path in the
original graph. Hence if exactly two vertices of the graph have an odd degree, then the
graph has an Euler path but not Euler circuit.

This concludes the proof.

Example:

Find Euler path or circuit?

Solution:
In the above graph, all the vertices have even degree, hence there is an Euler circuit. The

Euler circuit is 1,2,3,4,5,10,15,14,13,12,11,6,13,8,9,14,12,7,8,3,10,9,4,2,7,6,1

Hamilton paths

A path xg, xi, ..., X0, X, in the graph G = (V, E) is called Hamilton path if V ={x,, x;,
..., X1, Xp} and x; # xj for 0 <1 <j < n. A circuit Xg, Xy, ..., Xn-1, Xn, X0, Withn > 1,1in a
graph G =(V, E) is a Hamilton circuit if xg, Xy, ..., X5.1, Xn 1s @ Hamilton path.

A graph with a vertex of degree one cannot have a Hamilton circuit.
If a vertex in a graph has degree 2, then both edges incident with this vertex must be part

of Hamilton cycle.
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Example:

Find Hamilton circuit from the following graph if exists? What about Hamilton path?

1 2 3
(a) (b) 4
. 8

Solution:

In graph (a) there is no Hamilton circuit since the node ¢ has degree 2 and both the edges
from it must be in Hamilton circuit, which is not possible. One of the Hamilton path in
the graph (a)is a, b, c, d, e.

In graph (b) we can find Hamilton circuit, the circuit can be 1,2,3,5,6, 9,8,7,4,1. Since
there is circuit we can have path also.

Theorem 7: Dirac’s Theorem

If G is a simple graph with n vertices with n > 3 such that the degree of every vertex in G
is at least n/2, then G has a Hamilton circuit.

Theorem 8: Ore’s Theorem

If G is a simple graph with n vertices with n = 3 such that deg(u) + deg(v) = n for every

pair of nonadjacent vertices u and v in G, then G has a Hamilton path.

Planar graphs

A graph is called a planar if it can be drawn in the plane without any edges crossing.
Such drawing is called a planar representation of the graph.
Example:

Draw the graph below as planar representation of the graph.
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Solution:

Theorem 9: Euler’s Formula

Let G be a connected planar simple graph with e edges and v vertices. Let r be the
number of regions in a planar representation of G. Thenr=e — v + 2.

Example:

Suppose that a connected planar graph has 30 edges. If a planar representation of this
graph divides the plane into 20 regions, how many vertices does this graph have?
Solution:

We have, r = 20, e = 30, so by Euler’s formula we have v=e—-r+2=30-20+2 =12.

So the number of vertices is 12.

Corollary 1:

If G is a connected planar simple graph with e edges and v vertices where v > 3, then e <
3v-6.

Corollary 2:

If G is a connected planar simple graph, then G has a vertex of degree not exceeding five.

Corollary 3:

If a connected planar simple graph has e edges and v vertices with v > 3 and no circuits

of length three, then e <2v — 4.
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If a graph is planar, so will be any graph obtained by removing an edge {u, v} and adding
a new vertex w together with edges {u, w} and {w, v}. Such an operation is called an
elementary subdivision. The graphs G; = (V,, E;) and G, = (V,, E;) are called
homeomorphic if they can be obtained from the same graph by a sequence of elementary
subdivisions.

Example:

The below example graphs are homeomorphic to the third graph.

Theorem 10: Kuratowski’s Theorem
A graph is nonplanar if and only if it contains a subgraph homeomorphic to Ks 3 or Ks.
Example:

Determine whether the following graph is planar or not?

Solution:

Above we saw that the graph is homeomorphic to Ks, the given graph is not planar.
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Graph coloring

A coloring of a simple graph is the assignment of a color to each vertex of the graph so
that no two adjacent vertices are assigned the same color.

A chromatic number of a graph is the least number of colors needed for a coloring of this
graph.

Theorem 11:The Four Color Theorem

The chromatic number of a planar graph is no greater than four.

To show the chromatic number of a graph as k we must show that the graph can be
colored using k colors and the given graph cannot be colored using fewer than k colors.
Example#1

Construct the dual graph for the map shown. Then find the number of colors needed to

color the map so that no two adjacent regions have the same color.

Solution:

We can color the graph with at most 2
colors as shown in the graph. Take R and
G as red and green
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Example#2

Find the chromatic number of the graph below.

Solution:

Lets start with vertex 1, it has adjacent vertices as 2, 3, 4, 5, 6, 9 so using only 2 colors
would suffice for the graph having the edges from 1 to its adjacent vertices. However
since 9 has its adjacent vertices as 1, 2, 3, 4 we cannot just color the above graph with 2
colors because at least 1, 2 and 9 must have different colors. Trying with 3 colors we
found that at least 1, 2, 3, and 9 must have different colors. So trying with four colors we
can color the graph. Hence the chromatic number of the above graph is 4. possible
coloring is shown in the figure below.

2G
3Y

9B 5B

8 R 6G
7B

Self Studies

Read chapter 8 of your textbook such that you can cover all the read materials in the
class.

* Student: this portion won’t be covered in detail in the class, read yourself.
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Trees

A connected simple graph without a cycle is called tree. It has got wide varieties of
applications in the field of computer science like in searching and sorting. The simple
graph that no simple circuit but not connected is called forest. The forest has each of its
connected components as tree.

Theorem 1:

An undirected graph is a tree if and only if there is a unique simple path between any two
of its vertices.

Proof:

Assume that T is a tree. Since T is a tree it is a connected simple graph with no simple
circuits. Let x and y be two vertices of T. we know that every connected graph has a
simple path between every pair of vertices. So there is a simple path from x to y. This
path must be unique because, if the path between x and y is not unique then there is
another path between x and y that uses edges different from the path between x and y for
first path, then reversing the path i.e. going from x to y from the first path and going from
y to x through the second path forms a circuit. This is a contradiction that T is a tree;
hence there is a unique simple path between any two vertices of a tree.

Again assume that there is a unique simple path between any two vertices of a graph, say
T. Since there is a path between any two vertices of a graph, the graph is connected.
Now, we can show that the graph T cannot have simple circuit. Had there been a simple
circuit, there would be two simple paths between two vertices, say x and y, and the two
simple path between x and y would create a simple circuit where first path goes from x to
y and the second path goes from y to x. This violates our assumption that the path is

unique. Hence, a graph with a unique simple path between any two vertices is a tree.

A rooted tree is a tree in which one vertex has been designated as the root and every
edge is directed away from the root. The tree in which root is defined produces a directed
graph (since path between two vertices (theorem 1) in a tree is unique).

Take a rooted tree T. if v is the vertex in T other than root, then the parent of v is a

vertex u in T such that there is a directed edge from u to v. In this scenario v is called
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child of u. Vertices with same parents are called siblings. All the vertices that appear in
the path from root to some vertex v in T, including root are called ancestors of v. The
descendents of a vertex v are those vertices that have v as their ancestor. All the vertices
that have children are called internal vertices (root is also an internal vertex if the tree
has more than one vertices).

A subtree of a rooted tree T, with root a, is a subgraph of the tree consisting of a and all
of its descendents and all the edges incident to these descendents. Here all the vertices
must be in T also.

A m-ary tree is a rooted tree in which every internal vertex has no more than m children.
It is called full m-ary tree if every internal vertex has exactly m children.

Example: binary tree i.e. 2-ary tree.

An ordered rooted tree is a rooted tree where the children of each internal vertex are
ordered. For e.g. in ordered binary tree (also called just a binary tree) if an internal vertex
has two children then the first child is called left child and the second child is called
right child.

[Work out some examples and read some other terminologies like height of a tree, level
of a tree, complete m-ary tree, balanced tree, left subtree, and right subtree, etc. not

covered here yourself to understand them. |

From now onwards unless stated explicitly tree is referred to as rooted tree.
Properties of Trees

Theorem 2:

A tree with n vertices has n-1 edges.

Proof:

Basis Step: For n =1, since there is only one vertex, there are no edges i.e. number of
edge = 1-1 =0, true.

Inductive Hypothesis: Assume that the tree with k vertices had k-1 edges is true.
Inductive Step: Now for the tree with k+1 vertices, take a vertex v such that v is a leaf

and take another vertex w such that w is a parent of v i.e. there is an edge {w, v}. If we
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remove the edge {w, v} and the leaf v, then the new tree formed (the graph will be
connected again) will have k vertices and by the induction hypothesis it will have k-1
edges. Now we had deleted 1 vertex and 1 edge form the tree with k+1 vertices to form a
tree with k vertices and k-1 edges, hence it is seen that the tree with k+1 vertices has k
edges.

This completes the proof.

Theorem 3:

A full m-ary tree with i internal vertices contain n = mi + 1 vertices.

Proof:

In a full m-ary tree all the vertices but the root are child of the internal vertices. Since
each internal vertex has m children there are mi vertices in the tree other than the root.

Hence the tree has n =mi + 1 vertices.

Theorem 4:
A full m-ary tree with
1) n vertices has i = (n-1)/m internal vertices and / =[(m-1)n + 1]/m leaves,
1) 1 internal vertices has n = mi + 1 vertices and / = (m-1)i + 1 leaves,
1ii) [ leaves has n = (m/ —1)/(m —1) vertices and i = (/-1)/(m-1) internal vertices.
Proof:
Let n be number of vertices, 1 be number of internal vertices, and [ be number of leaves.

From the theorem 3 we know that n = mi +1. Again we know the fact thatn =1 + 1.

1) From n = mi + 1 we have 1 = (n-1)/m and putting this value of iinn=/+1and
solving for 1 we get [ =[(m-1)n + 1]/m

ii) We know n = mi + 1, now putting value of ninn=17+1we get/=(m-1)i + 1.

1ii) Form the result of ii i.e. / = (m-1)i + 1 we geti = (/ —1)/(m-1) so putting this
value in n = mi + 1, we get n = (m/ —1)/(m —1) and similarly putting this

obtained value of ninn =/ + i, we get (I-1)/(m-1).
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Theorem 5:

There are at most m" leaves in an m-ary tree of height h.

Proof:

Basis Step: when height is 1 i.e. h = 1, then the root has at most m children and for the
m-ary tree of height 1 all the children of root are leaves. So, the statement is true for h =1.
Inductive Hypothesis: Assume that the statement is true for all m-ary trees with height
less than h.

Inductive step: If we can prove that the statement is true for h then we are done. Take a
tree of height h. Now cut off the edges that are going from the root to its children. Then
there will be subtrees rooted at children of the root of the tree of height h. However, the
newly formed rooted tree will have height h-1, so from inductive hypothesis we can say
that each subtree has at most m™" leaves. Here there is at most m such subtrees, since root
has at most m children. So the total number of leaves at the tree of height h is at most m.
m™ =m".

This proves the theorem.

Corollary 1:
If an m-ary tree of height h has 1 leaves, then h 2> |_10g ml —‘ . If the m-ary tree is full and

balanced, then & =[log,, I].

Applications

Binary Search Trees

Binary search tree is a binary tree in which each child vertex is considered as a right or
left child, no vertex has more than one left or right child, and each vertex is labeled with a
key, which is one of the items. The keys are places such that a key of a vertex is larger
than all the key of the vertices of its left subtree and smaller than the keys of the vertices

of its right subtree.

Downloaded from CSIT Tutor



Chapter — Trees ' Discrete Structures

Example:
Build a binary search tree for the words oenology, phrenology, campanology,

ornithology, ichthyology, limnology, alchemy, and astrology using alphabetic order.

Solution:
Oenology Oenology
Oenology
Phrenology Campanology Phrenology
Oenology
Campanology Phrenology
Oenology
Campanology Phrenology
Ornithology
Ichthyology .

Oenology Ornithology

Campanology Phrenology
Oenology
Ichthyology Ornithology
Campanology Phrenology
Limnology Ichthyology | Orithology
Alchemy
Oenolo
® Limnology
Campanology Phrenology
Alchemy

Iehthyology | Orithology

Astrology Limnology
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Decision Trees

Binary trees can be used to locate items based on comparisons, in this situation each
comparison tells us to visit either left subtree or right subtree. A rooted tree where
internal vertices correspond to a decision and subtree at these vertices gives possible
outcomes of the decisions made is called decision tree.

Example:

Complexity of sorting algorithms

Solution:

You know many of the sorting algorithms. In most of those algorithms the basic idea for
sorting is comparison between two items at a time. In this situation those comparisons
can be pictorially represented as full binary tree. Since we know that for n elements there
may be n! solution that could be obtained from the comparison, we can say that there will

be n! leaves in the formed decision tree. By the result we know the height of the tree is

|_10g m n!—|. We again can say that each internal vertex represents to the comparison. So,
total number of comparison for getting output is same as reaching the leaf i.e. |_10gm n!—|.

We can show that this comparison is €2(nlogn). Hence a lower bound for any comparison
sorting is Q(nlogn). The decision tree below depicts the above idea for three elements a,

b, and c.

a,b,c

yes

o yes no

a,c,b c,a,b b,c,a c,b,a
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Spanning Trees

Given a simple graph G. A spanning tree of G is a subgraph of G that is a tree
containing every vertex of G. Here since we can forma tree, a simple graph G must be
connected. This is true conversely too. The theorem below gives explanation for this
prediction.

Theorem 6:

A simple graph is connected if and only if it has a spanning tree.

Proof:

Lets assume that a simple graph G has a spanning tree T. We know that T contains every
vertex of G. Since T is a tree there is a path between any two of its vertices. Again, since
T is a subgraph of G there is a path between any two of the vertices of G. Hence G is
connected.

Now, assume that G is connected. Here if G is not a tree then there must be some simple
circuit. Remove the edge that connects two vertices of G and that makes the simple
circuit. This removal of an edge breaks the circuit from G and creates subgraph of G, but
still contains all the vertices of G and it is connected. If the newly created subgraph is not
a tree, we can process similarly as above to break the circuit. Since there are only finite
numbers of edges the removal of edges terminates at last making the subgraph as a tree.
This tree will contain all the vertices of a graph G thus becoming a spanning tree of G.

This is a proof.

Depth First Search

This is a technique that can be used to find the spanning tree of a connected graph. In this
method we will arbitrarily choose a vertex that is regarded as a root. When root is chosen
the path is formed by starting at a root vertex by successively adding vertices and edges,
where the added edges is incident with the last vertex in the path and is not repeated. This
process is continued until no possible path can be formed. If the path contains all the
vertices then the tree consisting this path is spanning tree. If the path does not go through
all the vertices then we must add other edges and vertices. For this move back from the

last vertex that is met in the previous path and find whether it is possible to find new path

Downloaded from CSIT Tutor



Chapter — Trees ' Discrete Structures

starting from the vertex just met. If there is such a path continue the process above. If this
cannot be done, move back to another vertex and repeat the process. The whole process is
continued until all the vertices are met. Since we have finite graph the process terminates
giving us a spanning tree. The underlying undirected graph of the found rooted tree is a
spanning tree of the given graph.

This method of search is also called backtracking.

Example:

Use depth first search to find a spanning tree of the following graph.

Solution:

Choose a as initial vertex then we have

@@eeea/@eee

R TN
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Algorithm: Depth First Search

function DFS(G: a connected graph with vertices vy, v, ..., V)

{

T = tree consisting only of the vertex v; (arbitrarily chosen root)
visit(vy)

/

function visit(v: vertex of G)

{

for each vertex w adjacent to v and not yet in T
begin

add vertex w and edge {v,w} to T

visit (w)
end
/
Analysis:

If we represent the graph as adjacency list, no computation is needed for finding the
adjacent vertices. The complexity of the algorithm is greatly affected by visit function
we can write its running time in terms of the relation T(n) = T(n-1) + O(n), here O(n) is
for each vertex at most all the vertices are checked (for loop). At each recursive call a

vertex is decreased. Solving this we can find that the complexity of an algorithm is O(n?).

Breadth First Search

In this process also rooted tree is formed and its underlying undirected graph is a
spanning tree. Here choose some vertex arbitrarily as a root. Add all the vertices and
edges that are incident in the root. The new vertices added will become the vertices at the
level 1 of the spanning tree. Arbitrarily order these vertices. Visit in order all the added
vertices (level 1) and follow the process above to add new edges and vertices Remember
you cannot add same vertex in twice. This process gives us level 2 vertices. Follow the

same procedure until all the vertices in a tree have been added. Since the graph is finite
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this process terminates and contains all the vertices making the tree as a spanning tree.
Example:

Use breadth first search to find a spanning tree of the following graph.

Solution:

Choose a as initial vertex then we have

Order the vertices of level 1 i.e. {b, c, g, e, f}. Say order be {e, f, g, b, c}.
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Algorithm: Breadth First Search
function BFS(G: a connected graph with vertices vy, vy, ..., V)
{
T = tree consisting only of the vertex v; (arbitrarily chosen root)
L = an empty list
put v; in the list L of unprocessed vertices
while L is not empty
begin
remove the first vertex v, form L
for each neighbor w to v

if wis notin L and not in T then

begin
add w to the end of the list L
add w and edge {v,w} to T
end
end
/
Analysis:

From the algorithm above all the vertices are put once in the list and they are accessed.
For each accessed vertex from the list their adjacent vertices are looked for and this can
be done in O(n) time. This computation for all the possible vertices that may be in the list

i.e. n produce complexity of an algorithm as O(n?) .

Minimum Spanning Trees

A minimum spanning tree in a connected weighted graph is a spanning tree that has the
smallest possible sum of weights of its edges.
In this part we study one algorithm that is used to construct the minimum spanning tree

from the given connected weighted graph.
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Prim’s Algorithm

Working principle: This is a greedy algorithm that chooses optimal solution at a
particular instance. Choose an edge of the smallest edge, put it into the spanning tree.
Successively add to the tree edges of minimum weight that are incident to the vertex
already in the tree and not forming a simple circuit. Stop when n-1 edges are added.
Algorithm:
Tree prim(G: connected weighted undirected graph with n vertices)
{
T = a minimum weight edge.
fori=1ton-2
{
e = an edge of minimum weight incident to a vertex in T and not forming a simple
circuit in T if added to T
T = T with e added

Example:

Find the minimum spanning tree of the following graph using Prim’s algorithm.
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Solution:

Self Studies

Read chapter 9 of your textbook such that you can cover all the read materials in the

class.

Note: Tree traversals are not covered here; it is to the students as self-study.

Downloaded from CSIT Tutor



Chapter — Boolean Algebra ' Discrete Structures

[Boolean Algebra]

Discrete Structures (CSc 511)
Samujjwal Bhandari

Central Department of Computer Science and Information Technology (CDCSIT)

Tribhuvan University, Kirtipur,
Kathmandu, Nepal.

Downloaded from CSIT Tutor



Chapter — Boolean Algebra ' Discrete Structures

Boolean functions

Boolean algebra gives us rules and operations that can be used for working on the set
{0,1}. It has got applications in many fields like computing, electronics, etc. The most
basic operations that are used in Boolean algebra are:

Complementation: Complementation of an element is denoted with bar, or prime (we
use prime here) and is defined by the rules 0’ =1 and 1’ = 0.

Boolean Sum: The Boolean sum is denoted by + or OR and is defined by the rules 1 + 1
=1,140=1,0+1=1,and0+0=0.

Boolean Product: The Boolean product is denoted by dot (.) or AND, with the rules
definedas 1.1=1,1.0=0,0.1 =0, and 0.0 =0.

Remember: sometimes we may disregard dot symbol.

Given A = {0,1}, then A" = {(xy, X2, ..., Xy) | X; € A for 1 <i < n}is the set of all possible
n-tuples of Os and 1s. The variable x is called Boolean variable if it has only O or 1 as its
value i.e. values from A only. A function from A" to A is called Boolean function of
degree n.
Example:

Find the values of Boolean function represented by F(x, y, z) = X + yz.

Solution:
X y z yz X+yz
0 0 0 0 0
0 0 1 0 0
0 1 0 0 0
0 1 1 1 1
1 0 0 0 1
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1
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The Boolean expressions in the variables xi, X», ..., X, can be defined as
0, 1, xq, X, ..., X, are Boolean expressions;
if E and F are Boolean expressions, then E’, (EF), and (E + F) are Boolean
expressions.
Equality of Boolean functions: Boolean functions F and G of n variable are equal if and
only if F(by, by, ..., by) = G(by, by, ..., by) whenever by, by, ..., b, belongs to A where A is
the set on which Boolean function is defined. Two Boolean expressions representing

same Boolean function are called equivalent. For e.g. ab, ab + 0 and ab.1 are equivalent.

The complement of the Boolean function F is the function F’, where F’(xy, X, ..., X,) =
[F(xi, X2, ..., Xp)] .

Given two Boolean functions F and G on n variables,

The Boolean sum F + G is given by

(F + G)(x1, X2, ..., Xp) = F(Xxy, X2, ..., Xn) +G(x1, X2, ..., X,) and

The Boolean product F.G is defined by

(FG)(xy, X2, ..., xn) = F(xy, X2, ..., Xp) G(X1, X2, ..., Xp)

Number of Boolean functions of degree n

A Boolean function of degree n is a function from the set of 2" elements that is formed as
a pair from the set A ={0,1} to the set with two elements. Hence by the product rule there
are 2" different Boolean function of degree n.

Example:

Boolean functions of degree 2 are given in table below.

x|y |Fi|F|F|Fs|F | Fs|F|F|Fo|Fio|Fi|Fi2|Fi3|Fu|Fis|Fis
Oo(0,0]j]0O0O]O0O|O0O]J]O]O0O]0]|0]1 1 1 1 1 1 1 1
o1 ,0]0]00]1 1 1 17000 O0 1 1 1 1
r{ofojoj|1r|jryo0}(o0j1|1r,0¢}0O0 1 1 {00 1 1
1|10} 1}0| 1010|110 1 0 1 0 1 0 1
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Identities of Boolean Algebra

x.1l=x
x+0=x
x.0=0
x+1 =1
X.X =X
X+X =X
x’) =x
X.y=y.X
X+y=y+x

xX.y).z=x.(y.z)
x+y)+z=x+(y+2)
X.(y+z2)=x.y)+(x.2)
x+(y.z2)=x+y).x+2)
x.yy=x"+y
x+y)y=x.y
X+(X.y)=x
X.X+y)=x

x+x =1

x.x =0

Duality

Identity law
Identity law
Domination law
Domination law
Idempotent law
Idempotent law
Complementation law
Commutative law
Commutative law
Associative law
Associative law
Distributive law
Distributive law
De Morgan’s law
De Morgan’s law
Absorption law
Absorption law
Unit property
Zero property

The dual of Boolean expression is obtained by interchanging Boolean sums and Boolean

products and interchanging Os and 1s. See identities above to note that all the properties

have duals.

The dual of a Boolean function F represented by Boolean expressions denoted by F'is the

function represented by duals of these Boolean expressions.

All the identities are valid for the duals. This is called duality principle.
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Representation Of Boolean functions

The problem of getting the Boolean expression when the Boolean function is given will
be covered here. Every Boolean function can be represented by using three operators +, .,
and ‘. We also study whether we can use smaller set of operators to represent the Boolean
functions.

A literal is a Boolean variable or its complement. A minterm of the Boolean variables
X1, X2, ..., Xp 1s @ Boolean product y;y,, ... ys, Where y; = Xj or y; = X;‘. S0 minterm is a
product of n literals, with one literal for each variable. The minterm has value 1 if and
only if all the literals have value 1. This is true only if x; = 1 when y; = x; and x; = 0 when
yi = X;‘. A maxterm of the Boolean variables x, Xa, ..., X, is a Boolean sum y; + y, + ...
+ yn, where yi = X; or y; = X;‘. So maxterm is a sum of n literals, with one literal for each
variable. The maxterm has value O if and only if all the literals have value 0. This is true
only if x; = 0 when y; = x; and x; = 1 when y; = x;".

Sum of Products and Product of Sums Expansions

By taking Boolean sum of distinct minterms we can build up a Boolean expression with a
specified set of values. This representation of Boolean function is called sum of products
expansion or disjunctive normal form (DNF). Similarly by taking Boolean products of
distinct maxterms we can build up a Boolean expression with a specified set of values.
This representation of Boolean function is called product of sums expansion or
conjunctive normal form (CNF).

Example:

Find the sum of products expansion and product of the sums expansion of the Boolean

function F(x, y, z) = (X + z)y.

Solution:

F(x,y, z) =(X+2)y
=Xy +zy Distributive law
=Xy +Yyz Commutative law
=xyl + lyz Identity law

=xy(z+72)+(XxX+Xx")yz Unit property

=Xyz+Xxyz’ +xyz+x’yz  Distributive law.
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=Xyz + Xyz + Xyz’ + X’yz  Associative law

=XyzZ + Xyz’ +X’yz Idempotent law

Xyz + Xyz’ + x’yz is the sum of products
We use next approach for finding product of sums however for identity property use O

while taking sum if you are using above approach.

X y zZ X+z x+2)y
0 0 0 0 0
0 0 1 1 0
0 1 0 0 0
0 1 1 1 1
1 0 0 1 0
1 0 1 1 0
1 1 0 1 1
1 1 1 1 1

The five rows in the table above gives 0 value so the product of sums is
xX+y+z2)x+y+72)X+y +z) (X’ +y+2z) (X +y+2z") Here put complement where
there is 1.

Functional Completeness

We have seen that every Boolean function can be represented by CNF or DNF and they
just use the operators °, ., and + so we say that the set of operators {°, ., +} is functionally
complete. We can use less operator than mentioned above if we eliminate every Boolean
sum by using the fact x +y = ((Xy)’)’ to get functionally complete set {‘, .} or by
eliminating every Boolean product by using the fact xy = ((x + y)’)’ to get functionally
complete set {*, +}.

We have the definition of the operator  (NOR) as 141 = 110 =041 = 0 and 040 = 1.
Here we can show that {{} is functionally complete. This can be done if we can show
that it can express the function having both  and . Since {‘, .} is functionally complete.

x* = xdx, x +y = (xdy) | (xly). Hence {l} is functionally complete. If we define
NAND {I} with111=0and010=011=110=1 show {l} is functionally complete.
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Logic gates

The basic elements in the electronic circuit are gates. They implement the Boolean
operations. Here we study different types of gates and their use in circuit design. While
designing the circuits we generally consider circuits that has no memory and the output
depends upon the input only. This type of circuit is called combinational circuit or

gating networks.
Gates

Inverter: This type of gate accepts the value of Boolean variable as input and returns the

complement of the value. The pictorial symbol is like below:
X—p>o—px’

OR gate: This gate as shown in symbol below, carries out the function as provided by

Boolean sum. We will permit more than two inputs to OR gate.

X]+Xp+...+X
X I X+y X1X2 1+ X2 n
y —Pp SYELLY
n

AND gate: This gate as shown in symbol below, carries out the function as provided by

Boolean product. We will permit more than two inputs to AND gate.

Xy X;] ——p X1X2 ... Xp
X—y T, —
y —» X

X

NAND gate:

This gate as shown in symbol below, carries out the function as provided by Boolean

operation givenby 1 11 =0and010=011=110=1. > xly
Y—Pj

NOR gate: This gate as shown in symbol below, carries out the function as provided by

Boolean operation givenby 14 1=0l1=140=0and0l 0=1.
Ly

=
y
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Example Circuits

Example #1:

Design a circuit that implements majority voting for five individuals.

Solution:

Here, let each of the five individuals is represented by Boolean variables say, a, b, c, d, e
respectively. The result of the vote will be winning if at least 3 of the individual have
their ok vote. Let ok vote is assignment of 1 to the Boolean variable and not ok vote be
assignment of 0 to the Boolean variable. Then we have the winning combination as given
by the Boolean function below.

abc + abd + abe + acd + ace + ade+ bed + bee + bde + cde. This can be drawn as.

akcd e

abc

abd

Output

abe

acd

ace

N

JUUJUUUUUUU

ade

bed EP.

bce

bde

cde

Example #2:
Construct a circuit for half subtractor using AND, OR gates and inverters. A half

subtractor has two bits as input and returns as output their difference bit and a borrow bit.
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Solution:

Half adder has two bits as input, let x and y be the inputs and x be minuend and y be
subtrahend, then we can design circuit for x — y. There will be two cases whether x >y or
x < y. In the first case we have F(0, 0) = 0, F(1, 0) = 1 and F(1, 1) = O these all are
difference bits. In the second case F(0, 1) = 1 where 1 is borrowed. The below truth table

gives input output relationship of a half subtractor.

X y B D
0 0 0 0
0 1 1 1
1 0 0 1
1 1 0 0

From the truth table we have functions B = x’y and D = X’y + xy’ in the form of sum of

products. So the circuit is as below.
X A%

—
X,y D—' ]—]
m—l >

B

Minimization of Circuits

When we try to design the circuit its efficiency greatly depends upon the number of gates
in use. So the minimization of Boolean function is the technique that helps in minimizing
the number of gates that should be used by creating new equivalent Boolean function

from the old one with larger number of literals.
Karnaugh Maps

The graphical method for reducing the number of terms in Boolean expression
representing a circuit by finding the terms that can be combined together is called

Karnaugh map or K-map. This technique is useful for Boolean function having very
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small number of variables. This method is not suitable for mechanizing the process. Here
we study minimization of Boolean functions using K-map where functions are in the sum

of products form.

Minimization of Boolean function with two variables

There are four possible minterms in the sum of products expansions of a Boolean
function having two variables. K-map for this type of function is as below where adjacent
cells differ in only one bit position. Simplification can be done if we get two 1’s in the
adjacent cells.

The product of literals corresponding to a block of all Is in the K-map is called an
implicant of the function being minimized. It is called prime implicant if this block of
Is is not contained in a larger block of 1s representing the product of fewer literals than
this product. The goal of using Karnaugh map is to identify the largest possible blocks in
the map and cover all the Is in the map with least number of blocks, using the largest
block first. We choose a block if it is the only block of 1s covering a 1 in the K-map and
such block represents an essential prime implicant. The sum of products that will be

obtained will be the sum of prime implicants.

y y
X Xy Xy’
X’ X’y X’y’

Example:
Find the K-map for x’y + x’y’ and simplify.
Solution: y y

X 0 0

e

The simplified function is x’.
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Minimization of Boolean function with three variables

The rectangle of a K-map with three variables has eight cells as shown in the figure. Two
cells have common border if and only if they have only one bit difference i.e. adjacent.
The simplification is similar as of K-map with variables but we can also take 2 by 2 or 4

by 1 block of cells here.

yz yz yz yz
X XyZ Xyz’ Xy'z’ Xy'z
X’ X’yZ X’yz’ X’y’Z’ X’y’Z

Example:
Use K-map to minimize the sum of products expansion xyz + xyz’ +x’yz’ + xX’y’z
Solution:
The K-map is
yzZ yz’ yz y'z

T m o
o T [ o |

The simplification is Xy + yz’ + xX’y’z.

The K-maps for four variables have 16 cells where two of the cells are adjacent if and
only if they differ by single literal. The possible combinations for simplification are 1 by

2orlby4orlby8or2by2or2by4or2by8or4by4or4by 8 and their reverses.

Students: try this yourself and in case of any difficulties contact me!
The K-maps for other variables can be generalized as above where function with n

variables will have 2" cells.
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Don’t Care Conditions

Sometimes while designing the circuit, some of the input combinations may not occur or
are not possible. For these types of combinations we can take the value of that
combination as 1 or O arbitrarily in the minimization of Boolean function. Such values for
these functions for the combinations are called don’t care conditions. We denote this with
d or x symbol in the map.

Example:

Find a minimal sum of products expansion.

2.9 )

yz yZ' yz yz

WX d 1 d 1

Solution:
yz YZ YZ yz

wx’ 0 d 1 0

v Lo N

The simplified function is z’ + wx.

More Examples:

Example #1:

Build a circuit using OR gates, AND gates, and inverters that produces an output of 1 if a
decimal digit, encoded using binary coded decimal expansion, is divisible by 3 and an
output 0 otherwise.

Solution:
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The truth table below gives the input output relation.

Discrete Structures

Digit w X y F
0 0 0 0 1
1 0 0 0 0
2 0 0 1 0
3 0 0 1 1
4 0 1 0 0
5 0 1 0 0
6 0 1 1 1
7 0 1 1 0
8 1 0 0 0
9 1 0 0 1

From the above truth table we can draw K-map as

WX

]

WX

9 9

W X

wW’X

yz yzZ yz yz
d @ d ﬂi\

OIS
1 0 @ 0

0 m 0|0

2 2 b

The simplification gives X’yz + Xyz’ + w'X'y’z’ + wz

The logic circuit for this is

w

N < M

3 ) Output
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Example #2:

Design a circuit that implements majority voting for three individuals. Use Karnaugh
map for simplification.

Solution:

If any two of the individuals have positive vote then the outcome is 1. If we assume X, vy,
z for three individuals voting, then we have the truth table as and corresponding K-map is

as shown below:

X y V/ F

0 0 0 0

0 | 0 1 0 e y2 yw oy

0 1 0 0 x | M ) 0 c
0 1 1 1 X’ \1] 0 0 0

1 0 0 0

1 0 1 1 The simplification is yz + Xz + Xy.

I I 0 I The circuit is as given below.

1 1 1 1

N < >

>E Output
>

Self Studies

Read chapter 10 of your textbook such that you can cover all the read materials in the

class.
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